Spaces:
Running
Running
from huggingface_hub import InferenceClient | |
import gradio as gr | |
client = InferenceClient( | |
"mistralai/Mistral-7B-Instruct-v0.3" | |
) | |
# Your system prompt | |
SYSTEM_PROMPT = "Your goal is to create engaging, authentic, and contextually appropriate captions for social media platforms. The captions should captivate the audience without being cringe-worthy, ensuring they resonate well with diverse demographics." | |
def format_prompt(message, history): | |
prompt = "<s>" | |
prompt += f"[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]" # Add the system prompt here | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate( | |
prompt, history=[], temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
iface = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Textbox(placeholder="Enter your prompt here...", lines=2, max_lines=2, label=""), | |
gr.Button("Generate") | |
], | |
outputs=gr.Textbox(label="Output", interactive=True, lines=10), | |
layout="vertical" | |
) | |
iface.launch() | |