from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.3" ) # Your system prompt SYSTEM_PROMPT = "Your goal is to create engaging, authentic, and contextually appropriate captions for social media platforms. The captions should captivate the audience without being cringe-worthy, ensuring they resonate well with diverse demographics." def format_prompt(message, history): prompt = "" prompt += f"[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]" # Add the system prompt here for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history=[], temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output iface = gr.Interface( fn=generate, inputs=[ gr.Textbox(placeholder="Enter your prompt here...", lines=2, max_lines=2, label=""), gr.Button("Generate") ], outputs=gr.Textbox(label="Output", interactive=True, lines=10), layout="vertical" ) iface.launch()