File size: 2,211 Bytes
bc71799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import streamlit as st
import youtube_dl
from moviepy.editor import VideoFileClip
import speech_recognition as sr
from transformers import pipeline

# Initialize the Hugging Face text generation pipeline (using GPT-Neo or GPT-2)
generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")

def download_video(url):
    ydl_opts = {
        'format': 'bestvideo+bestaudio/best',
        'outtmpl': 'downloaded_video.mp4'
    }
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        ydl.download([url])

def trim_video(video_path, start_time, end_time):
    video = VideoFileClip(video_path)
    trimmed_video = video.subclip(start_time, end_time)
    trimmed_video.write_videofile("trimmed_video.mp4")

def transcribe_audio(video_path):
    recognizer = sr.Recognizer()
    with sr.AudioFile(video_path) as source:
        audio = recognizer.record(source)
    try:
        text = recognizer.recognize_google(audio)  # This uses Google's free Web Speech API
        return text
    except sr.UnknownValueError:
        return "Sorry, I could not understand the audio."
    except sr.RequestError:
        return "Error with the API request."

def generate_subtitles(text):
    # Use Hugging Face's GPT-Neo model for text generation
    generated_text = generator(text, max_length=150, num_return_sequences=1)
    return generated_text[0]['generated_text']

# Streamlit Interface
st.title("YouTube Video Trimmer and Subtitle Generator")
url = st.text_input("Enter YouTube URL")
start_time = st.selectbox("Select Start Time", [0, 15, 30, 60])
end_time = st.selectbox("Select End Time", [15, 30, 60, 90])

font_style = st.selectbox("Select Font Style", ["Arial", "Helvetica", "Times New Roman", "Courier"])

if st.button("Generate"):
    # Download and trim the video
    download_video(url)
    trim_video("downloaded_video.mp4", start_time, end_time)
    
    # Transcribe audio to text
    transcription = transcribe_audio("trimmed_video.mp4")
    
    # Generate subtitles using Hugging Face's GPT model
    subtitles = generate_subtitles(transcription)
    
    # Show trimmed video and generated subtitles
    st.video("trimmed_video.mp4")
    st.subheader("Subtitles:")
    st.write(subtitles)