import streamlit as st import youtube_dl from moviepy.editor import VideoFileClip import speech_recognition as sr from transformers import pipeline # Initialize the Hugging Face text generation pipeline (using GPT-Neo or GPT-2) generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B") def download_video(url): ydl_opts = { 'format': 'bestvideo+bestaudio/best', 'outtmpl': 'downloaded_video.mp4' } with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([url]) def trim_video(video_path, start_time, end_time): video = VideoFileClip(video_path) trimmed_video = video.subclip(start_time, end_time) trimmed_video.write_videofile("trimmed_video.mp4") def transcribe_audio(video_path): recognizer = sr.Recognizer() with sr.AudioFile(video_path) as source: audio = recognizer.record(source) try: text = recognizer.recognize_google(audio) # This uses Google's free Web Speech API return text except sr.UnknownValueError: return "Sorry, I could not understand the audio." except sr.RequestError: return "Error with the API request." def generate_subtitles(text): # Use Hugging Face's GPT-Neo model for text generation generated_text = generator(text, max_length=150, num_return_sequences=1) return generated_text[0]['generated_text'] # Streamlit Interface st.title("YouTube Video Trimmer and Subtitle Generator") url = st.text_input("Enter YouTube URL") start_time = st.selectbox("Select Start Time", [0, 15, 30, 60]) end_time = st.selectbox("Select End Time", [15, 30, 60, 90]) font_style = st.selectbox("Select Font Style", ["Arial", "Helvetica", "Times New Roman", "Courier"]) if st.button("Generate"): # Download and trim the video download_video(url) trim_video("downloaded_video.mp4", start_time, end_time) # Transcribe audio to text transcription = transcribe_audio("trimmed_video.mp4") # Generate subtitles using Hugging Face's GPT model subtitles = generate_subtitles(transcription) # Show trimmed video and generated subtitles st.video("trimmed_video.mp4") st.subheader("Subtitles:") st.write(subtitles)