Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,30 +6,29 @@ import json
|
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
9 |
-
import spaces
|
10 |
import torch
|
11 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
12 |
|
13 |
-
|
14 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
15 |
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
-
CACHE_EXAMPLES =
|
18 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
19 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
20 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
21 |
|
22 |
-
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
def save_image(img):
|
35 |
unique_name = str(uuid.uuid4()) + ".png"
|
@@ -41,7 +40,6 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
41 |
seed = random.randint(0, MAX_SEED)
|
42 |
return seed
|
43 |
|
44 |
-
@spaces.GPU(duration=30, queue=False)
|
45 |
def generate(
|
46 |
prompt: str,
|
47 |
negative_prompt: str = "",
|
@@ -55,23 +53,22 @@ def generate(
|
|
55 |
use_resolution_binning: bool = True,
|
56 |
progress=gr.Progress(track_tqdm=True),
|
57 |
):
|
58 |
-
pipe.to(device)
|
59 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
60 |
-
generator = torch.Generator().manual_seed(seed)
|
61 |
|
62 |
options = {
|
63 |
-
"prompt":prompt,
|
64 |
-
"negative_prompt":negative_prompt,
|
65 |
-
"width":width,
|
66 |
-
"height":height,
|
67 |
-
"guidance_scale":guidance_scale,
|
68 |
-
"num_inference_steps":num_inference_steps,
|
69 |
-
"generator":generator,
|
70 |
-
"use_resolution_binning":use_resolution_binning,
|
71 |
-
"output_type":"pil",
|
72 |
-
|
73 |
}
|
74 |
-
|
|
|
75 |
images = pipe(**options).images
|
76 |
|
77 |
image_paths = [save_image(img) for img in images]
|
@@ -79,17 +76,15 @@ def generate(
|
|
79 |
|
80 |
|
81 |
css = '''
|
82 |
-
.gradio-container{max-width: 700px !important}
|
83 |
-
h1{text-align:center}
|
84 |
-
footer {
|
85 |
-
visibility: hidden
|
86 |
-
}
|
87 |
'''
|
|
|
88 |
with gr.Blocks(css=css) as demo:
|
89 |
-
|
90 |
gr.Markdown("""
|
91 |
<div style="text-align: center; font-weight: bold; font-size: 2em;">
|
92 |
-
Womener AI
|
93 |
</div>
|
94 |
""")
|
95 |
|
@@ -154,7 +149,6 @@ with gr.Blocks(css=css) as demo:
|
|
154 |
value=8,
|
155 |
)
|
156 |
|
157 |
-
|
158 |
use_negative_prompt.change(
|
159 |
fn=lambda x: gr.update(visible=x),
|
160 |
inputs=use_negative_prompt,
|
@@ -185,4 +179,4 @@ with gr.Blocks(css=css) as demo:
|
|
185 |
)
|
186 |
|
187 |
if __name__ == "__main__":
|
188 |
-
demo.queue(max_size=50).launch()
|
|
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
12 |
+
DESCRIPTION = "A Stable Diffusion XL demo running on CPU."
|
|
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES", "1") == "1"
|
16 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
17 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
18 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
19 |
|
20 |
+
# Set device to CPU explicitly
|
21 |
+
device = torch.device("cpu")
|
22 |
|
23 |
+
# Load pipeline and scheduler for CPU
|
24 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
25 |
+
"sd-community/sdxl-flash",
|
26 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
27 |
+
use_safetensors=True,
|
28 |
+
add_watermarker=False
|
29 |
+
)
|
30 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
31 |
+
pipe.to(device) # Move the model to CPU
|
32 |
|
33 |
def save_image(img):
|
34 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
40 |
seed = random.randint(0, MAX_SEED)
|
41 |
return seed
|
42 |
|
|
|
43 |
def generate(
|
44 |
prompt: str,
|
45 |
negative_prompt: str = "",
|
|
|
53 |
use_resolution_binning: bool = True,
|
54 |
progress=gr.Progress(track_tqdm=True),
|
55 |
):
|
|
|
56 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
57 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
58 |
|
59 |
options = {
|
60 |
+
"prompt": prompt,
|
61 |
+
"negative_prompt": negative_prompt if use_negative_prompt else None,
|
62 |
+
"width": width,
|
63 |
+
"height": height,
|
64 |
+
"guidance_scale": guidance_scale,
|
65 |
+
"num_inference_steps": num_inference_steps,
|
66 |
+
"generator": generator,
|
67 |
+
"use_resolution_binning": use_resolution_binning,
|
68 |
+
"output_type": "pil",
|
|
|
69 |
}
|
70 |
+
|
71 |
+
# Generate images
|
72 |
images = pipe(**options).images
|
73 |
|
74 |
image_paths = [save_image(img) for img in images]
|
|
|
76 |
|
77 |
|
78 |
css = '''
|
79 |
+
.gradio-container { max-width: 700px !important; }
|
80 |
+
h1 { text-align: center; }
|
81 |
+
footer { visibility: hidden; }
|
|
|
|
|
82 |
'''
|
83 |
+
|
84 |
with gr.Blocks(css=css) as demo:
|
|
|
85 |
gr.Markdown("""
|
86 |
<div style="text-align: center; font-weight: bold; font-size: 2em;">
|
87 |
+
Womener AI (CPU Mode)
|
88 |
</div>
|
89 |
""")
|
90 |
|
|
|
149 |
value=8,
|
150 |
)
|
151 |
|
|
|
152 |
use_negative_prompt.change(
|
153 |
fn=lambda x: gr.update(visible=x),
|
154 |
inputs=use_negative_prompt,
|
|
|
179 |
)
|
180 |
|
181 |
if __name__ == "__main__":
|
182 |
+
demo.queue(max_size=50).launch()
|