mrdbourke commited on
Commit
2579dcf
Β·
verified Β·
1 Parent(s): 8fd23ab

Uploading our food not food text classifier demo from the video!

Browse files
Files changed (3) hide show
  1. README.md +11 -4
  2. app.py +48 -0
  3. requirements.txt +3 -0
README.md CHANGED
@@ -1,12 +1,19 @@
1
  ---
2
- title: Learn Hf Food Not Food Text Classifier Demo Video
3
- emoji: πŸƒ
4
  colorFrom: blue
5
- colorTo: blue
6
  sdk: gradio
7
  sdk_version: 4.40.0
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
1
  ---
2
+ title: Food Not Food Text Classifier
3
+ emoji: πŸ—πŸš«πŸ₯‘
4
  colorFrom: blue
5
+ colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 4.40.0
8
  app_file: app.py
9
  pinned: false
10
+ license: apache-2.0
11
  ---
12
 
13
+ # πŸ—πŸš«πŸ₯‘ Food Not Food Text Classifier
14
+
15
+ Small demo to showcase a text classifier to determine if a sentence is about food or not food.
16
+
17
+ DistilBERT model fine-tuned on a small synthetic dataset of [250 generated food/not_food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
18
+
19
+ See [source code notebook](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 1. Import the required packages
2
+ import torch
3
+ import gradio as gr
4
+
5
+ from typing import Dict
6
+ from transformers import pipeline
7
+
8
+ # 2. Define our function to use with our model.
9
+ def food_not_food_classifier(text: str) -> Dict[str, float]:
10
+ # 2. Setup food not food text classifier
11
+ food_not_food_classifier_pipeline = pipeline(task="text-classification",
12
+ model="mrdbourke/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
13
+ batch_size=32,
14
+ device="cuda" if torch.cuda.is_available() else "cpu",
15
+ top_k=None) # top_k=None => return all possible labels
16
+
17
+ # 3. Get the outputs from our pipeline
18
+ outputs = food_not_food_classifier_pipeline(text)[0]
19
+
20
+ # 4. Format output for Gradio
21
+ output_dict = {}
22
+ for item in outputs:
23
+ output_dict[item["label"]] = item["score"]
24
+
25
+ return output_dict
26
+
27
+ # 3. Create a Gradio interface
28
+ description = """
29
+ A text classifier to determine if a sentence is about food or not food.
30
+
31
+ Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) a [dataset of LLM generated food/not_food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
32
+
33
+ See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
34
+ """
35
+
36
+ demo = gr.Interface(
37
+ fn=food_not_food_classifier,
38
+ inputs="text",
39
+ outputs=gr.Label(num_top_classes=2),
40
+ title="πŸ—πŸš«πŸ₯‘ Food or Not Food Text Classifier",
41
+ description=description,
42
+ examples=[["I whipped up a fresh batch of code, but it to seems to have a syntax error"],
43
+ ["A plate of pancakes and strawberry icing"]]
44
+ )
45
+
46
+ # 4. Launch the interface
47
+ if __name__ == "__main__":
48
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ torch
3
+ transformers