# 1. Import the required packages import torch import gradio as gr from typing import Dict from transformers import pipeline # 2. Define our function to use with our model. def food_not_food_classifier(text: str) -> Dict[str, float]: # 2. Setup food not food text classifier food_not_food_classifier_pipeline = pipeline(task="text-classification", model="mrdbourke/learn_hf_food_not_food_text_classifier-distilbert-base-uncased", batch_size=32, device="cuda" if torch.cuda.is_available() else "cpu", top_k=None) # top_k=None => return all possible labels # 3. Get the outputs from our pipeline outputs = food_not_food_classifier_pipeline(text)[0] # 4. Format output for Gradio output_dict = {} for item in outputs: output_dict[item["label"]] = item["score"] return output_dict # 3. Create a Gradio interface description = """ A text classifier to determine if a sentence is about food or not food. Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) a [dataset of LLM generated food/not_food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions). See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb). """ demo = gr.Interface( fn=food_not_food_classifier, inputs="text", outputs=gr.Label(num_top_classes=2), title="🍗🚫🥑 Food or Not Food Text Classifier", description=description, examples=[["I whipped up a fresh batch of code, but it to seems to have a syntax error"], ["A plate of pancakes and strawberry icing"]] ) # 4. Launch the interface if __name__ == "__main__": demo.launch()