mrdbourke's picture
Uploading Trashify box detection model app.py
cfb57b4 verified
import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoImageProcessor
from transformers import AutoModelForObjectDetection
# Note: Can load from Hugging Face or can load from local
model_save_path = "mrdbourke/detr_finetuned_trashify_box_detector"
# Load the model and preprocessor
image_processor = AutoImageProcessor.from_pretrained(model_save_path)
model = AutoModelForObjectDetection.from_pretrained(model_save_path)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
# Get the id2label dictionary from the model
id2label = model.config.id2label
# Set up a colour dictionary for plotting boxes with different colours
color_dict = {
"bin": "green",
"trash": "blue",
"hand": "purple",
"trash_arm": "yellow",
"not_trash": "red",
"not_bin": "red",
"not_hand": "red",
}
# Create helper functions for seeing if items from one list are in another
def any_in_list(list_a, list_b):
"Returns True if any item from list_a is in list_b, otherwise False."
return any(item in list_b for item in list_a)
def all_in_list(list_a, list_b):
"Returns True if all items from list_a are in list_b, otherwise False."
return all(item in list_b for item in list_a)
def predict_on_image(image, conf_threshold):
with torch.no_grad():
inputs = image_processor(images=[image], return_tensors="pt")
outputs = model(**inputs.to(device))
target_sizes = torch.tensor([[image.size[1], image.size[0]]]) # height, width
results = image_processor.post_process_object_detection(outputs,
threshold=conf_threshold,
target_sizes=target_sizes)[0]
# Return all items in results to CPU
for key, value in results.items():
try:
results[key] = value.item().cpu() # can't get scalar as .item() so add try/except block
except:
results[key] = value.cpu()
# Can return results as plotted on a PIL image (then display the image)
draw = ImageDraw.Draw(image)
# Get a font from ImageFont
font = ImageFont.load_default(size=20)
# Get class names as text for print out
class_name_text_labels = []
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]):
# Create coordinates
x, y, x2, y2 = tuple(box.tolist())
# Get label_name
label_name = id2label[label.item()]
targ_color = color_dict[label_name]
class_name_text_labels.append(label_name)
# Draw the rectangle
draw.rectangle(xy=(x, y, x2, y2),
outline=targ_color,
width=3)
# Create a text string to display
text_string_to_show = f"{label_name} ({round(score.item(), 3)})"
# Draw the text on the image
draw.text(xy=(x, y),
text=text_string_to_show,
fill="white",
font=font)
# Remove the draw each time
del draw
# Setup blank string to print out
return_string = ""
# Setup list of target items to discover
target_items = ["trash", "bin", "hand"]
# If no items detected or trash, bin, hand not in list, return notification
if (len(class_name_text_labels) == 0) or not (any_in_list(list_a=target_items, list_b=class_name_text_labels)):
return_string = f"No trash, bin or hand detected at confidence threshold {conf_threshold}. Try another image or lowering the confidence threshold."
return image, return_string
# If there are some missing, print the ones which are missing
elif not all_in_list(list_a=target_items, list_b=class_name_text_labels):
missing_items = []
for item in target_items:
if item not in class_name_text_labels:
missing_items.append(item)
return_string = f"Detected the following items: {class_name_text_labels}. But missing the following in order to get +1: {missing_items}. If this is an error, try another image or altering the confidence threshold. Otherwise, the model may need to be updated with better data."
# If all 3 trash, bin, hand occur = + 1
if all_in_list(list_a=target_items, list_b=class_name_text_labels):
return_string = f"+1! Found the following items: {class_name_text_labels}, thank you for cleaning up the area!"
print(return_string)
return image, return_string
# Create the interface
demo = gr.Interface(
fn=predict_on_image,
inputs=[
gr.Image(type="pil", label="Target Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
],
outputs=[
gr.Image(type="pil", label="Image Output"),
gr.Text(label="Text Output")
],
title="๐Ÿšฎ Trashify Object Detection Demo V1",
description="Help clean up your local area! Upload an image and get +1 if there is all of the following items detected: trash, bin, hand.",
# Examples come in the form of a list of lists, where each inner list contains elements to prefill the `inputs` parameter with
examples=[
["examples/trashify_example_1.jpeg", 0.25],
["examples/trashify_example_2.jpeg", 0.25],
["examples/trashify_example_3.jpeg", 0.25],
],
cache_examples=True
)
# Launch the demo
demo.launch()