Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
|
5 |
+
from transformers import AutoImageProcessor
|
6 |
+
from transformers import AutoModelForObjectDetection
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
model_save_path = "mrdbourke/detr_finetuned_trashify_box_detector"
|
11 |
+
|
12 |
+
image_processor = AutoImageProcessor.from_pretrained(model_save_path)
|
13 |
+
model = AutoModelForObjectDetection.from_pretrained(model_save_path)
|
14 |
+
|
15 |
+
id2label = model.config.id2label
|
16 |
+
color_dict = {
|
17 |
+
"not_trash": "red",
|
18 |
+
"bin": "green",
|
19 |
+
"trash": "blue",
|
20 |
+
"hand": "purple"
|
21 |
+
}
|
22 |
+
|
23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
model = model.to(device)
|
25 |
+
|
26 |
+
def predict_on_image(image, conf_threshold=0.25):
|
27 |
+
with torch.no_grad():
|
28 |
+
inputs = image_processor(images=[image], return_tensors="pt")
|
29 |
+
outputs = model(**inputs.to(device))
|
30 |
+
|
31 |
+
target_sizes = torch.tensor([[image.size[1], image.size[0]]]) # height, width
|
32 |
+
|
33 |
+
results = image_processor.post_process_object_detection(outputs,
|
34 |
+
threshold=conf_threshold,
|
35 |
+
target_sizes=target_sizes)[0]
|
36 |
+
# Return all items in results to CPU
|
37 |
+
for key, value in results.items():
|
38 |
+
try:
|
39 |
+
results[key] = value.item().cpu() # can't get scalar as .item() so add try/except block
|
40 |
+
except:
|
41 |
+
results[key] = value.cpu()
|
42 |
+
|
43 |
+
# Can return results as plotted on a PIL image (then display the image)
|
44 |
+
draw = ImageDraw.Draw(image)
|
45 |
+
|
46 |
+
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]):
|
47 |
+
# Create coordinates
|
48 |
+
x, y, x2, y2 = tuple(box.tolist())
|
49 |
+
|
50 |
+
# Get label_name
|
51 |
+
label_name = id2label[label.item()]
|
52 |
+
targ_color = color_dict[label_name]
|
53 |
+
|
54 |
+
# Draw the rectangle
|
55 |
+
draw.rectangle(xy=(x, y, x2, y2),
|
56 |
+
outline=targ_color,
|
57 |
+
width=3)
|
58 |
+
|
59 |
+
# Create a text string to display
|
60 |
+
text_string_to_show = f"{label_name} ({round(score.item(), 3)})"
|
61 |
+
|
62 |
+
# Draw the text on the image
|
63 |
+
draw.text(xy=(x, y),
|
64 |
+
text=text_string_to_show,
|
65 |
+
fill="white")
|
66 |
+
|
67 |
+
# Remove the draw each time
|
68 |
+
del draw
|
69 |
+
|
70 |
+
return image
|
71 |
+
|
72 |
+
demo = gr.Interface(
|
73 |
+
fn=predict_on_image,
|
74 |
+
inputs=[
|
75 |
+
gr.Image(type="pil", label="Upload Target Image"),
|
76 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
77 |
+
],
|
78 |
+
outputs=gr.Image(type="pil"),
|
79 |
+
title="🚮 Trashify Object Detection Demo",
|
80 |
+
description="Upload an image to detect whether there's a bin, a hand or trash in it."
|
81 |
+
)
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
demo.launch()
|