Spaces:
Running
Running
Uploading Trashify box detection model app.py
Browse files- .gitattributes +1 -0
- .gradio/cached_examples/18/Image Output/66ec734ca428ae2384f6/image.webp +0 -0
- .gradio/cached_examples/18/Image Output/92cc1241b9494671fc05/image.webp +0 -0
- .gradio/cached_examples/18/log.csv +3 -0
- app.py +74 -16
- examples/trashify_example_1.jpeg +0 -0
- examples/trashify_example_2.jpeg +3 -0
- requirements.txt +1 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/trashify_example_2.jpeg filter=lfs diff=lfs merge=lfs -text
|
.gradio/cached_examples/18/Image Output/66ec734ca428ae2384f6/image.webp
ADDED
.gradio/cached_examples/18/Image Output/92cc1241b9494671fc05/image.webp
ADDED
.gradio/cached_examples/18/log.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
Image Output,Text Output,timestamp
|
2 |
+
"{""path"": "".gradio/cached_examples/18/Image Output/92cc1241b9494671fc05/image.webp"", ""url"": ""/gradio_api/file=/tmp/gradio/a00bd5b7c75100f6f600a22625949c9350d2827637ab3e454535b4f44376dde0/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}","'+1! Found the following items: ['trash', 'bin', 'hand', 'not_trash', 'bin'], thank you for cleaning up the area!",2024-11-16 13:55:27.991471
|
3 |
+
"{""path"": "".gradio/cached_examples/18/Image Output/66ec734ca428ae2384f6/image.webp"", ""url"": ""/gradio_api/file=/tmp/gradio/b83f3584e66d5d7a6d26f3988d3b8c6cb39d94dd8433f94788676e9ec8c21327/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}","'+1! Found the following items: ['bin', 'trash', 'hand', 'not_trash', 'not_trash'], thank you for cleaning up the area!",2024-11-16 13:55:28.113367
|
app.py
CHANGED
@@ -1,29 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from PIL import Image, ImageDraw
|
4 |
|
5 |
from transformers import AutoImageProcessor
|
6 |
from transformers import AutoModelForObjectDetection
|
7 |
|
8 |
-
from
|
9 |
-
|
10 |
model_save_path = "mrdbourke/detr_finetuned_trashify_box_detector"
|
11 |
|
|
|
12 |
image_processor = AutoImageProcessor.from_pretrained(model_save_path)
|
13 |
model = AutoModelForObjectDetection.from_pretrained(model_save_path)
|
14 |
|
|
|
|
|
|
|
|
|
15 |
id2label = model.config.id2label
|
16 |
-
|
17 |
-
|
|
|
18 |
"bin": "green",
|
19 |
"trash": "blue",
|
20 |
-
"hand": "purple"
|
|
|
|
|
|
|
|
|
21 |
}
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
def predict_on_image(image, conf_threshold
|
27 |
with torch.no_grad():
|
28 |
inputs = image_processor(images=[image], return_tensors="pt")
|
29 |
outputs = model(**inputs.to(device))
|
@@ -43,6 +58,12 @@ def predict_on_image(image, conf_threshold=0.25):
|
|
43 |
# Can return results as plotted on a PIL image (then display the image)
|
44 |
draw = ImageDraw.Draw(image)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]):
|
47 |
# Create coordinates
|
48 |
x, y, x2, y2 = tuple(box.tolist())
|
@@ -50,6 +71,7 @@ def predict_on_image(image, conf_threshold=0.25):
|
|
50 |
# Get label_name
|
51 |
label_name = id2label[label.item()]
|
52 |
targ_color = color_dict[label_name]
|
|
|
53 |
|
54 |
# Draw the rectangle
|
55 |
draw.rectangle(xy=(x, y, x2, y2),
|
@@ -62,23 +84,59 @@ def predict_on_image(image, conf_threshold=0.25):
|
|
62 |
# Draw the text on the image
|
63 |
draw.text(xy=(x, y),
|
64 |
text=text_string_to_show,
|
65 |
-
fill="white"
|
|
|
66 |
|
67 |
# Remove the draw each time
|
68 |
del draw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
return image
|
71 |
|
|
|
72 |
demo = gr.Interface(
|
73 |
fn=predict_on_image,
|
74 |
inputs=[
|
75 |
-
gr.Image(type="pil", label="
|
76 |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
77 |
],
|
78 |
-
outputs=
|
|
|
|
|
|
|
79 |
title="🚮 Trashify Object Detection Demo",
|
80 |
-
description="Upload an image
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
)
|
82 |
|
83 |
-
|
84 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
|
5 |
from transformers import AutoImageProcessor
|
6 |
from transformers import AutoModelForObjectDetection
|
7 |
|
8 |
+
# Note: Can load from Hugging Face or can load from local
|
|
|
9 |
model_save_path = "mrdbourke/detr_finetuned_trashify_box_detector"
|
10 |
|
11 |
+
# Load the model and preprocessor
|
12 |
image_processor = AutoImageProcessor.from_pretrained(model_save_path)
|
13 |
model = AutoModelForObjectDetection.from_pretrained(model_save_path)
|
14 |
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
model = model.to(device)
|
17 |
+
|
18 |
+
# Get the id2label dictionary from the model
|
19 |
id2label = model.config.id2label
|
20 |
+
|
21 |
+
# Set up a colour dictionary for plotting boxes with different colours
|
22 |
+
color_dict = {
|
23 |
"bin": "green",
|
24 |
"trash": "blue",
|
25 |
+
"hand": "purple",
|
26 |
+
"trash_arm": "yellow",
|
27 |
+
"not_trash": "red",
|
28 |
+
"not_bin": "red",
|
29 |
+
"not_hand": "red",
|
30 |
}
|
31 |
|
32 |
+
# Create helper functions for seeing if items from one list are in another
|
33 |
+
def any_in_list(list_a, list_b):
|
34 |
+
"Returns True if any item from list_a is in list_b, otherwise False."
|
35 |
+
return any(item in list_b for item in list_a)
|
36 |
+
|
37 |
+
def all_in_list(list_a, list_b):
|
38 |
+
"Returns True if all items from list_a are in list_b, otherwise False."
|
39 |
+
return all(item in list_b for item in list_a)
|
40 |
|
41 |
+
def predict_on_image(image, conf_threshold):
|
42 |
with torch.no_grad():
|
43 |
inputs = image_processor(images=[image], return_tensors="pt")
|
44 |
outputs = model(**inputs.to(device))
|
|
|
58 |
# Can return results as plotted on a PIL image (then display the image)
|
59 |
draw = ImageDraw.Draw(image)
|
60 |
|
61 |
+
# Get a font from ImageFont
|
62 |
+
font = ImageFont.load_default(size=20)
|
63 |
+
|
64 |
+
# Get class names as text for print out
|
65 |
+
class_name_text_labels = []
|
66 |
+
|
67 |
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]):
|
68 |
# Create coordinates
|
69 |
x, y, x2, y2 = tuple(box.tolist())
|
|
|
71 |
# Get label_name
|
72 |
label_name = id2label[label.item()]
|
73 |
targ_color = color_dict[label_name]
|
74 |
+
class_name_text_labels.append(label_name)
|
75 |
|
76 |
# Draw the rectangle
|
77 |
draw.rectangle(xy=(x, y, x2, y2),
|
|
|
84 |
# Draw the text on the image
|
85 |
draw.text(xy=(x, y),
|
86 |
text=text_string_to_show,
|
87 |
+
fill="white",
|
88 |
+
font=font)
|
89 |
|
90 |
# Remove the draw each time
|
91 |
del draw
|
92 |
+
|
93 |
+
# Setup blank string to print out
|
94 |
+
return_string = ""
|
95 |
+
|
96 |
+
# Setup list of target items to discover
|
97 |
+
target_items = ["trash", "bin", "hand"]
|
98 |
+
|
99 |
+
# If no items detected or trash, bin, hand not in list, return notification
|
100 |
+
if (len(class_name_text_labels) == 0) or not (any_in_list(list_a=target_items, list_b=class_name_text_labels)):
|
101 |
+
return_string = f"No trash, bin or hand detected at confidence threshold {conf_threshold}. Try another image or lowering the confidence threshold."
|
102 |
+
return image, return_string
|
103 |
+
|
104 |
+
# If there are some missing, print the ones which are missing
|
105 |
+
elif not all_in_list(list_a=target_items, list_b=class_name_text_labels):
|
106 |
+
missing_items = []
|
107 |
+
for item in target_items:
|
108 |
+
if item not in class_name_text_labels:
|
109 |
+
missing_items.append(item)
|
110 |
+
return_string = f"Detected the following items: {class_name_text_labels}. But missing the following in order to get +1: {missing_items}. If this is an error, try altering the confidence threshold."
|
111 |
+
|
112 |
+
# If all 3 trash, bin, hand occur = + 1
|
113 |
+
if all_in_list(list_a=target_items, list_b=class_name_text_labels):
|
114 |
+
return_string = f"+1! Found the following items: {class_name_text_labels}, thank you for cleaning up the area!"
|
115 |
+
|
116 |
+
print(return_string)
|
117 |
|
118 |
+
return image, return_string
|
119 |
|
120 |
+
# Create the interface
|
121 |
demo = gr.Interface(
|
122 |
fn=predict_on_image,
|
123 |
inputs=[
|
124 |
+
gr.Image(type="pil", label="Target Image"),
|
125 |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
126 |
],
|
127 |
+
outputs=[
|
128 |
+
gr.Image(type="pil", label="Image Output"),
|
129 |
+
gr.Text(label="Text Output")
|
130 |
+
],
|
131 |
title="🚮 Trashify Object Detection Demo",
|
132 |
+
description="Help clean up your local area! Upload an image and get +1 if there is all of the following items detected: trash, bin, hand.",
|
133 |
+
# Examples come in the form of a list of lists, where each inner list contains elements to prefill the `inputs` parameter with
|
134 |
+
examples=[
|
135 |
+
["examples/trashify_example_1.jpeg", 0.25],
|
136 |
+
["examples/trashify_example_2.jpeg", 0.25]
|
137 |
+
],
|
138 |
+
cache_examples=True
|
139 |
)
|
140 |
|
141 |
+
# Launch the demo
|
142 |
+
demo.launch()
|
examples/trashify_example_1.jpeg
ADDED
examples/trashify_example_2.jpeg
ADDED
Git LFS Details
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
|
|
1 |
gradio
|
2 |
torch
|
3 |
transformers
|
4 |
-
timm
|
|
|
1 |
+
timm
|
2 |
gradio
|
3 |
torch
|
4 |
transformers
|
|