Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,107 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
|
43 |
"""
|
44 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
# from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoConfig, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
MODEL_NAME = "URaBOT2024/debertaV3_FullFeature"
|
9 |
+
|
10 |
+
# Load pre-trained models and tokenizers
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 2)
|
12 |
+
config = AutoConfig.from_pretrained(MODEL_NAME)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
+
|
15 |
+
# Set hardware target for model
|
16 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
17 |
+
model.to(device)
|
18 |
+
model.eval() # Set model to evaluation mode
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
def verify(psudo_id, username, display_name, tweet_content, is_verified, likes):
|
23 |
+
'''
|
24 |
+
Main Endpoint for URaBOT, a POST request that takes in a tweet's data and returns a "bot" score
|
25 |
+
|
26 |
+
Returns: JSON object {"percent": double}
|
27 |
+
|
28 |
+
payload:
|
29 |
+
"psudo_id": the temporary id of the tweet (as assigned in local HTML from Twitter)
|
30 |
+
"username": the profile's username (@tag)
|
31 |
+
"display_name": the profiles display name
|
32 |
+
"tweet_content": the text content of the tweet
|
33 |
+
'''
|
34 |
|
35 |
+
# #========== Error codes ==========#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# # Confirm that full payload was sent
|
38 |
+
# if 'username' not in request.form:
|
39 |
+
# return make_response(jsonify({"error": "Invalid request parameters.", "message" : "No username provided"}), 400)
|
40 |
+
|
41 |
+
# if 'display_name' not in request.form:
|
42 |
+
# return make_response(jsonify({"error": "Invalid request parameters.", "message" : "No display_name provided"}), 400)
|
43 |
+
|
44 |
+
# if 'tweet_content' not in request.form:
|
45 |
+
# return make_response(jsonify({"error": "Invalid request parameters.", "message" : "No tweet_content provided"}), 400)
|
46 |
+
|
47 |
+
# # Prevent multiple requests for the same tweet
|
48 |
+
# if request.form["psudo_id"] in processed_tweets:
|
49 |
+
# return make_response(jsonify({"error": "Conflict, tweet is already being/has been processed"}), 409)
|
50 |
|
|
|
51 |
|
52 |
+
# #========== Resolve Multiple Requests ==========#
|
53 |
|
54 |
+
# # Add tweet to internal (backend) process list
|
55 |
+
# processed_tweets.append(request.form["psudo_id"])
|
56 |
+
|
57 |
+
|
58 |
+
#========== Return Classification ==========#
|
59 |
+
|
60 |
+
# Process the tweet through the model
|
61 |
+
# input = request.form["tweet_content"] + tokenizer.sep_token + request.form["display_name"] + tokenizer.sep_token + request.form["is_verified"] + tokenizer.sep_token + request.form["likes"]
|
62 |
+
|
63 |
+
input = tweet_content + tokenizer.sep_token + display_name + tokenizer.sep_token + is_verified + tokenizer.sep_token + likes
|
64 |
+
tokenized_input = tokenizer(input, return_tensors='pt', padding=True, truncation=True).to(device)
|
65 |
+
with torch.no_grad():
|
66 |
+
outputs = model(**tokenized_input)
|
67 |
+
|
68 |
+
# Determine classification
|
69 |
+
sigmoid = (1 / (1 + np.exp(-outputs.logits.detach().numpy()))).tolist()[0]
|
70 |
+
|
71 |
+
# Apply Platt Scaling
|
72 |
+
# if USE_PS:
|
73 |
+
# sigmoid = [(1/(1+ math.exp(-(A * x + B)))) for x in sigmoid]
|
74 |
+
|
75 |
+
# Find majority class
|
76 |
+
label = np.argmax(outputs.logits.detach().numpy(), axis=-1).item()
|
77 |
+
|
78 |
+
|
79 |
+
# Return sigmoid-ish value for classification. Can instead return label for strict 0/1 binary classification
|
80 |
+
if label == 0:
|
81 |
+
return 1 - sigmoid[0]
|
82 |
+
else:
|
83 |
+
return sigmoid[1]
|
84 |
|
|
|
|
|
85 |
|
86 |
|
87 |
"""
|
88 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
89 |
"""
|
90 |
+
# Set up the Gradio Interface
|
91 |
+
iface = gr.Interface(
|
92 |
+
fn=verify, # Function to process input
|
93 |
+
inputs=[gr.inputs.Textbox(label= "Text 1"),
|
94 |
+
gr.inputs.Textbox(label= "Text 2"),
|
95 |
+
gr.inputs.Textbox(label= "Text 3"),
|
96 |
+
gr.inputs.Textbox(label= "Text 4")] # Input type (Textbox for text)
|
97 |
+
outputs=gr.outputs.Textbox(), # Output type (Textbox for generated text)
|
98 |
+
live=True # Optional: To update the result as you type
|
|
|
|
|
|
|
|
|
|
|
99 |
)
|
100 |
|
101 |
+
# Launch the API on a specific port
|
102 |
+
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
+
iface.launch(share=True) # share=True will give you a public URL to use the API
|
106 |
+
|
107 |
+
# demo.launch()
|