mreidy3 commited on
Commit
72f5fca
·
verified ·
1 Parent(s): 9609c14

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +89 -46
app.py CHANGED
@@ -1,64 +1,107 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
41
 
42
 
43
  """
44
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
  """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
1
  import gradio as gr
2
+ # from huggingface_hub import InferenceClient
3
+ from transformers import AutoModelForSequenceClassification, AutoConfig, AutoTokenizer
4
+ import torch
5
+ import numpy as np
6
 
 
 
 
 
7
 
8
+ MODEL_NAME = "URaBOT2024/debertaV3_FullFeature"
9
+
10
+ # Load pre-trained models and tokenizers
11
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 2)
12
+ config = AutoConfig.from_pretrained(MODEL_NAME)
13
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
14
+
15
+ # Set hardware target for model
16
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
17
+ model.to(device)
18
+ model.eval() # Set model to evaluation mode
19
+
20
+
21
+
22
+ def verify(psudo_id, username, display_name, tweet_content, is_verified, likes):
23
+ '''
24
+ Main Endpoint for URaBOT, a POST request that takes in a tweet's data and returns a "bot" score
25
+
26
+ Returns: JSON object {"percent": double}
27
+
28
+ payload:
29
+ "psudo_id": the temporary id of the tweet (as assigned in local HTML from Twitter)
30
+ "username": the profile's username (@tag)
31
+ "display_name": the profiles display name
32
+ "tweet_content": the text content of the tweet
33
+ '''
34
 
35
+ # #========== Error codes ==========#
 
 
 
 
 
 
 
 
36
 
37
+ # # Confirm that full payload was sent
38
+ # if 'username' not in request.form:
39
+ # return make_response(jsonify({"error": "Invalid request parameters.", "message" : "No username provided"}), 400)
40
+
41
+ # if 'display_name' not in request.form:
42
+ # return make_response(jsonify({"error": "Invalid request parameters.", "message" : "No display_name provided"}), 400)
43
+
44
+ # if 'tweet_content' not in request.form:
45
+ # return make_response(jsonify({"error": "Invalid request parameters.", "message" : "No tweet_content provided"}), 400)
46
+
47
+ # # Prevent multiple requests for the same tweet
48
+ # if request.form["psudo_id"] in processed_tweets:
49
+ # return make_response(jsonify({"error": "Conflict, tweet is already being/has been processed"}), 409)
50
 
 
51
 
52
+ # #========== Resolve Multiple Requests ==========#
53
 
54
+ # # Add tweet to internal (backend) process list
55
+ # processed_tweets.append(request.form["psudo_id"])
56
+
57
+
58
+ #========== Return Classification ==========#
59
+
60
+ # Process the tweet through the model
61
+ # input = request.form["tweet_content"] + tokenizer.sep_token + request.form["display_name"] + tokenizer.sep_token + request.form["is_verified"] + tokenizer.sep_token + request.form["likes"]
62
+
63
+ input = tweet_content + tokenizer.sep_token + display_name + tokenizer.sep_token + is_verified + tokenizer.sep_token + likes
64
+ tokenized_input = tokenizer(input, return_tensors='pt', padding=True, truncation=True).to(device)
65
+ with torch.no_grad():
66
+ outputs = model(**tokenized_input)
67
+
68
+ # Determine classification
69
+ sigmoid = (1 / (1 + np.exp(-outputs.logits.detach().numpy()))).tolist()[0]
70
+
71
+ # Apply Platt Scaling
72
+ # if USE_PS:
73
+ # sigmoid = [(1/(1+ math.exp(-(A * x + B)))) for x in sigmoid]
74
+
75
+ # Find majority class
76
+ label = np.argmax(outputs.logits.detach().numpy(), axis=-1).item()
77
+
78
+
79
+ # Return sigmoid-ish value for classification. Can instead return label for strict 0/1 binary classification
80
+ if label == 0:
81
+ return 1 - sigmoid[0]
82
+ else:
83
+ return sigmoid[1]
84
 
 
 
85
 
86
 
87
  """
88
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
89
  """
90
+ # Set up the Gradio Interface
91
+ iface = gr.Interface(
92
+ fn=verify, # Function to process input
93
+ inputs=[gr.inputs.Textbox(label= "Text 1"),
94
+ gr.inputs.Textbox(label= "Text 2"),
95
+ gr.inputs.Textbox(label= "Text 3"),
96
+ gr.inputs.Textbox(label= "Text 4")] # Input type (Textbox for text)
97
+ outputs=gr.outputs.Textbox(), # Output type (Textbox for generated text)
98
+ live=True # Optional: To update the result as you type
 
 
 
 
 
99
  )
100
 
101
+ # Launch the API on a specific port
102
+
103
 
104
  if __name__ == "__main__":
105
+ iface.launch(share=True) # share=True will give you a public URL to use the API
106
+
107
+ # demo.launch()