import gradio as gr # from huggingface_hub import InferenceClient from transformers import AutoModelForSequenceClassification, AutoConfig, AutoTokenizer import torch import numpy as np MODEL_NAME = "URaBOT2024/debertaV3_FullFeature" # Load pre-trained models and tokenizers model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 2) config = AutoConfig.from_pretrained(MODEL_NAME) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) # Set hardware target for model device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model.to(device) model.eval() # Set model to evaluation mode def verify(psudo_id, username, display_name, tweet_content, is_verified, likes): ''' Main Endpoint for URaBOT, a POST request that takes in a tweet's data and returns a "bot" score Returns: JSON object {"percent": double} payload: "psudo_id": the temporary id of the tweet (as assigned in local HTML from Twitter) "username": the profile's username (@tag) "display_name": the profiles display name "tweet_content": the text content of the tweet ''' # #========== Error codes ==========# # # Confirm that full payload was sent # if 'username' not in request.form: # return make_response(jsonify({"error": "Invalid request parameters.", "message" : "No username provided"}), 400) # if 'display_name' not in request.form: # return make_response(jsonify({"error": "Invalid request parameters.", "message" : "No display_name provided"}), 400) # if 'tweet_content' not in request.form: # return make_response(jsonify({"error": "Invalid request parameters.", "message" : "No tweet_content provided"}), 400) # # Prevent multiple requests for the same tweet # if request.form["psudo_id"] in processed_tweets: # return make_response(jsonify({"error": "Conflict, tweet is already being/has been processed"}), 409) # #========== Resolve Multiple Requests ==========# # # Add tweet to internal (backend) process list # processed_tweets.append(request.form["psudo_id"]) #========== Return Classification ==========# # Process the tweet through the model # input = request.form["tweet_content"] + tokenizer.sep_token + request.form["display_name"] + tokenizer.sep_token + request.form["is_verified"] + tokenizer.sep_token + request.form["likes"] input = tweet_content + tokenizer.sep_token + display_name + tokenizer.sep_token + is_verified + tokenizer.sep_token + likes tokenized_input = tokenizer(input, return_tensors='pt', padding=True, truncation=True).to(device) with torch.no_grad(): outputs = model(**tokenized_input) # Determine classification sigmoid = (1 / (1 + np.exp(-outputs.logits.detach().numpy()))).tolist()[0] # Apply Platt Scaling # if USE_PS: # sigmoid = [(1/(1+ math.exp(-(A * x + B)))) for x in sigmoid] # Find majority class label = np.argmax(outputs.logits.detach().numpy(), axis=-1).item() # Return sigmoid-ish value for classification. Can instead return label for strict 0/1 binary classification if label == 0: return 1 - sigmoid[0] else: return sigmoid[1] """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ # Set up the Gradio Interface iface = gr.Interface( fn=verify, # Function to process input inputs=[gr.inputs.Textbox(label= "Text 1"), gr.inputs.Textbox(label= "Text 2"), gr.inputs.Textbox(label= "Text"), gr.inputs.Textbox(label= "Text 4")], # Input type (Textbox for text) outputs=gr.outputs.Textbox(), # Output type (Textbox for generated text) live=True # Optional: To update the result as you type ) # Launch the API on a specific port if __name__ == "__main__": iface.launch(share=True) # share=True will give you a public URL to use the API # demo.launch()