File size: 5,049 Bytes
4dab15f
 
 
 
 
fededd1
4dab15f
43bc5dc
1a19e0f
4dab15f
 
fededd1
 
1a19e0f
fededd1
1a19e0f
4dab15f
 
 
fededd1
4dab15f
 
 
 
 
1a19e0f
4dab15f
 
 
 
1a19e0f
4dab15f
1bcb8fe
4dab15f
1a19e0f
43bc5dc
1a19e0f
 
 
 
 
 
 
 
b315dd9
 
 
 
 
1a19e0f
 
 
 
 
 
 
 
 
4dab15f
 
1a19e0f
 
1bcb8fe
4dab15f
1a19e0f
 
 
 
 
 
 
 
 
 
 
 
4dab15f
1a19e0f
 
 
 
fededd1
1a19e0f
fededd1
4dab15f
c0fb8c8
 
 
4dab15f
 
 
 
 
 
1a19e0f
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a19e0f
 
4dab15f
1a19e0f
6f84f9c
 
 
b0bca14
5f7ec69
b0bca14
1a19e0f
4dab15f
 
 
 
b6584c2
fededd1
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a19e0f
 
4dab15f
1a19e0f
4dab15f
 
 
 
 
1a19e0f
4dab15f
 
 
 
1a19e0f
 
4dab15f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import random
import sys
from importlib.resources import files

import soundfile as sf
import tqdm
from cached_path import cached_path
from hydra.utils import get_class
from omegaconf import OmegaConf

from f5_tts.infer.utils_infer import (
    load_model,
    load_vocoder,
    transcribe,
    preprocess_ref_audio_text,
    infer_process,
    remove_silence_for_generated_wav,
    save_spectrogram,
)
from f5_tts.model.utils import seed_everything


class F5TTS:
    def __init__(
        self,
        model="F5TTS_v1_Base",
        ckpt_file="",
        vocab_file="",
        ode_method="euler",
        use_ema=True,
        vocoder_local_path=None,
        device=None,
        hf_cache_dir=None,
    ):
        model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
        model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
        model_arc = model_cfg.model.arch

        self.mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
        self.target_sample_rate = model_cfg.model.mel_spec.target_sample_rate

        self.ode_method = ode_method
        self.use_ema = use_ema

        if device is not None:
            self.device = device
        else:
            import torch

            self.device = (
                "cuda"
                if torch.cuda.is_available()
                else "xpu"
                if torch.xpu.is_available()
                else "mps"
                if torch.backends.mps.is_available()
                else "cpu"
            )

        # Load models
        self.vocoder = load_vocoder(
            self.mel_spec_type, vocoder_local_path is not None, vocoder_local_path, self.device, hf_cache_dir
        )

        repo_name, ckpt_step, ckpt_type = "F5-TTS", 1250000, "safetensors"

        # override for previous models
        if model == "F5TTS_Base":
            if self.mel_spec_type == "vocos":
                ckpt_step = 1200000
            elif self.mel_spec_type == "bigvgan":
                model = "F5TTS_Base_bigvgan"
                ckpt_type = "pt"
        elif model == "E2TTS_Base":
            repo_name = "E2-TTS"
            ckpt_step = 1200000

        if not ckpt_file:
            ckpt_file = str(
                cached_path(f"hf://SWivid/{repo_name}/{model}/model_{ckpt_step}.{ckpt_type}", cache_dir=hf_cache_dir)
            )
        self.ema_model = load_model(
            model_cls, model_arc, ckpt_file, self.mel_spec_type, vocab_file, self.ode_method, self.use_ema, self.device
        )

    def transcribe(self, ref_audio, language=None):
        return transcribe(ref_audio, language)

    def export_wav(self, wav, file_wave, remove_silence=False):
        sf.write(file_wave, wav, self.target_sample_rate)

        if remove_silence:
            remove_silence_for_generated_wav(file_wave)

    def export_spectrogram(self, spec, file_spec):
        save_spectrogram(spec, file_spec)

    def infer(
        self,
        ref_file,
        ref_text,
        gen_text,
        show_info=print,
        progress=tqdm,
        target_rms=0.1,
        cross_fade_duration=0.15,
        sway_sampling_coef=-1,
        cfg_strength=2,
        nfe_step=32,
        speed=1.0,
        fix_duration=None,
        remove_silence=False,
        file_wave=None,
        file_spec=None,
        seed=None,
    ):
        if seed is None:
            seed = random.randint(0, sys.maxsize)
        seed_everything(seed)
        self.seed = seed

        ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text)

        wav, sr, spec = infer_process(
            ref_file,
            ref_text,
            gen_text,
            self.ema_model,
            self.vocoder,
            self.mel_spec_type,
            show_info=show_info,
            progress=progress,
            target_rms=target_rms,
            cross_fade_duration=cross_fade_duration,
            nfe_step=nfe_step,
            cfg_strength=cfg_strength,
            sway_sampling_coef=sway_sampling_coef,
            speed=speed,
            fix_duration=fix_duration,
            device=self.device,
        )

        if file_wave is not None:
            self.export_wav(wav, file_wave, remove_silence)

        if file_spec is not None:
            self.export_spectrogram(spec, file_spec)

        return wav, sr, spec


if __name__ == "__main__":
    f5tts = F5TTS()

    wav, sr, spec = f5tts.infer(
        ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
        ref_text="some call me nature, others call me mother nature.",
        gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
        file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
        file_spec=str(files("f5_tts").joinpath("../../tests/api_out.png")),
        seed=None,
    )

    print("seed :", f5tts.seed)