Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,559 Bytes
48c079f 1a19e0f 48c079f 1a19e0f 48c079f 1a19e0f 48c079f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import argparse
import json
from pathlib import Path
import librosa
import torch
from tqdm import tqdm
def main():
parser = argparse.ArgumentParser(description="UTMOS Evaluation")
parser.add_argument("--audio_dir", type=str, required=True, help="Audio file path.")
parser.add_argument("--ext", type=str, default="wav", help="Audio extension.")
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "xpu" if torch.xpu.is_available() else "cpu"
predictor = torch.hub.load("tarepan/SpeechMOS:v1.2.0", "utmos22_strong", trust_repo=True)
predictor = predictor.to(device)
audio_paths = list(Path(args.audio_dir).rglob(f"*.{args.ext}"))
utmos_score = 0
utmos_result_path = Path(args.audio_dir) / "_utmos_results.jsonl"
with open(utmos_result_path, "w", encoding="utf-8") as f:
for audio_path in tqdm(audio_paths, desc="Processing"):
wav, sr = librosa.load(audio_path, sr=None, mono=True)
wav_tensor = torch.from_numpy(wav).to(device).unsqueeze(0)
score = predictor(wav_tensor, sr)
line = {}
line["wav"], line["utmos"] = str(audio_path.stem), score.item()
utmos_score += score.item()
f.write(json.dumps(line, ensure_ascii=False) + "\n")
avg_score = utmos_score / len(audio_paths) if len(audio_paths) > 0 else 0
f.write(f"\nUTMOS: {avg_score:.4f}\n")
print(f"UTMOS: {avg_score:.4f}")
print(f"UTMOS results saved to {utmos_result_path}")
if __name__ == "__main__":
main()
|