Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,429 Bytes
4dab15f 1a19e0f fededd1 4dab15f b6584c2 fededd1 4dab15f fededd1 4dab15f fededd1 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f b6584c2 1a19e0f 4dab15f b6584c2 1a19e0f 4dab15f fededd1 cf68f41 ebe57a6 4dab15f b6584c2 4dab15f b6584c2 4dab15f 6c9d0da b6584c2 4dab15f b6584c2 ebe57a6 4dab15f 1a19e0f 4dab15f 1a19e0f ebe57a6 1a19e0f ebe57a6 4dab15f b6584c2 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f cf68f41 fededd1 cf68f41 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 5659999 4dab15f 1a19e0f 61075cd 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f b6584c2 fededd1 b6584c2 cf68f41 fb41309 b6584c2 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 43bc5dc 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f b6584c2 1a19e0f 4dab15f 1aefd03 1a19e0f 4dab15f b6584c2 57b3db8 b6584c2 57b3db8 b6584c2 57b3db8 1a19e0f 6e26246 b6584c2 1a19e0f 4dab15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
from __future__ import annotations
import gc
import math
import os
import torch
import torchaudio
import wandb
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
from ema_pytorch import EMA
from torch.optim import AdamW
from torch.optim.lr_scheduler import LinearLR, SequentialLR
from torch.utils.data import DataLoader, Dataset, SequentialSampler
from tqdm import tqdm
from f5_tts.model import CFM
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
from f5_tts.model.utils import default, exists
# trainer
class Trainer:
def __init__(
self,
model: CFM,
epochs,
learning_rate,
num_warmup_updates=20000,
save_per_updates=1000,
keep_last_n_checkpoints: int = -1, # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
checkpoint_path=None,
batch_size_per_gpu=32,
batch_size_type: str = "sample",
max_samples=32,
grad_accumulation_steps=1,
max_grad_norm=1.0,
noise_scheduler: str | None = None,
duration_predictor: torch.nn.Module | None = None,
logger: str | None = "wandb", # "wandb" | "tensorboard" | None
wandb_project="test_f5-tts",
wandb_run_name="test_run",
wandb_resume_id: str = None,
log_samples: bool = False,
last_per_updates=None,
accelerate_kwargs: dict = dict(),
ema_kwargs: dict = dict(),
bnb_optimizer: bool = False,
mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
is_local_vocoder: bool = False, # use local path vocoder
local_vocoder_path: str = "", # local vocoder path
model_cfg_dict: dict = dict(), # training config
):
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
if logger == "wandb" and not wandb.api.api_key:
logger = None
self.log_samples = log_samples
self.accelerator = Accelerator(
log_with=logger if logger == "wandb" else None,
kwargs_handlers=[ddp_kwargs],
gradient_accumulation_steps=grad_accumulation_steps,
**accelerate_kwargs,
)
self.logger = logger
if self.logger == "wandb":
if exists(wandb_resume_id):
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
else:
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
if not model_cfg_dict:
model_cfg_dict = {
"epochs": epochs,
"learning_rate": learning_rate,
"num_warmup_updates": num_warmup_updates,
"batch_size_per_gpu": batch_size_per_gpu,
"batch_size_type": batch_size_type,
"max_samples": max_samples,
"grad_accumulation_steps": grad_accumulation_steps,
"max_grad_norm": max_grad_norm,
"noise_scheduler": noise_scheduler,
}
model_cfg_dict["gpus"] = self.accelerator.num_processes
self.accelerator.init_trackers(
project_name=wandb_project,
init_kwargs=init_kwargs,
config=model_cfg_dict,
)
elif self.logger == "tensorboard":
from torch.utils.tensorboard import SummaryWriter
self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")
self.model = model
if self.is_main:
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
self.ema_model.to(self.accelerator.device)
print(f"Using logger: {logger}")
if grad_accumulation_steps > 1:
print(
"Gradient accumulation checkpointing with per_updates now, old logic per_steps used with before f992c4e"
)
self.epochs = epochs
self.num_warmup_updates = num_warmup_updates
self.save_per_updates = save_per_updates
self.keep_last_n_checkpoints = keep_last_n_checkpoints
self.last_per_updates = default(last_per_updates, save_per_updates)
self.checkpoint_path = default(checkpoint_path, "ckpts/test_f5-tts")
self.batch_size_per_gpu = batch_size_per_gpu
self.batch_size_type = batch_size_type
self.max_samples = max_samples
self.grad_accumulation_steps = grad_accumulation_steps
self.max_grad_norm = max_grad_norm
# mel vocoder config
self.vocoder_name = mel_spec_type
self.is_local_vocoder = is_local_vocoder
self.local_vocoder_path = local_vocoder_path
self.noise_scheduler = noise_scheduler
self.duration_predictor = duration_predictor
if bnb_optimizer:
import bitsandbytes as bnb
self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate)
else:
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
self.model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer)
@property
def is_main(self):
return self.accelerator.is_main_process
def save_checkpoint(self, update, last=False):
self.accelerator.wait_for_everyone()
if self.is_main:
checkpoint = dict(
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(),
ema_model_state_dict=self.ema_model.state_dict(),
scheduler_state_dict=self.scheduler.state_dict(),
update=update,
)
if not os.path.exists(self.checkpoint_path):
os.makedirs(self.checkpoint_path)
if last:
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
print(f"Saved last checkpoint at update {update}")
else:
if self.keep_last_n_checkpoints == 0:
return
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{update}.pt")
if self.keep_last_n_checkpoints > 0:
# Updated logic to exclude pretrained model from rotation
checkpoints = [
f
for f in os.listdir(self.checkpoint_path)
if f.startswith("model_")
and not f.startswith("pretrained_") # Exclude pretrained models
and f.endswith(".pt")
and f != "model_last.pt"
]
checkpoints.sort(key=lambda x: int(x.split("_")[1].split(".")[0]))
while len(checkpoints) > self.keep_last_n_checkpoints:
oldest_checkpoint = checkpoints.pop(0)
os.remove(os.path.join(self.checkpoint_path, oldest_checkpoint))
print(f"Removed old checkpoint: {oldest_checkpoint}")
def load_checkpoint(self):
if (
not exists(self.checkpoint_path)
or not os.path.exists(self.checkpoint_path)
or not any(filename.endswith((".pt", ".safetensors")) for filename in os.listdir(self.checkpoint_path))
):
return 0
self.accelerator.wait_for_everyone()
if "model_last.pt" in os.listdir(self.checkpoint_path):
latest_checkpoint = "model_last.pt"
else:
# Updated to consider pretrained models for loading but prioritize training checkpoints
all_checkpoints = [
f
for f in os.listdir(self.checkpoint_path)
if (f.startswith("model_") or f.startswith("pretrained_")) and f.endswith((".pt", ".safetensors"))
]
# First try to find regular training checkpoints
training_checkpoints = [f for f in all_checkpoints if f.startswith("model_") and f != "model_last.pt"]
if training_checkpoints:
latest_checkpoint = sorted(
training_checkpoints,
key=lambda x: int("".join(filter(str.isdigit, x))),
)[-1]
else:
# If no training checkpoints, use pretrained model
latest_checkpoint = next(f for f in all_checkpoints if f.startswith("pretrained_"))
if latest_checkpoint.endswith(".safetensors"): # always a pretrained checkpoint
from safetensors.torch import load_file
checkpoint = load_file(f"{self.checkpoint_path}/{latest_checkpoint}", device="cpu")
checkpoint = {"ema_model_state_dict": checkpoint}
elif latest_checkpoint.endswith(".pt"):
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
checkpoint = torch.load(
f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu"
)
# patch for backward compatibility, 305e3ea
for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]:
if key in checkpoint["ema_model_state_dict"]:
del checkpoint["ema_model_state_dict"][key]
if self.is_main:
self.ema_model.load_state_dict(checkpoint["ema_model_state_dict"])
if "update" in checkpoint or "step" in checkpoint:
# patch for backward compatibility, with before f992c4e
if "step" in checkpoint:
checkpoint["update"] = checkpoint["step"] // self.grad_accumulation_steps
if self.grad_accumulation_steps > 1 and self.is_main:
print(
"F5-TTS WARNING: Loading checkpoint saved with per_steps logic (before f992c4e), will convert to per_updates according to grad_accumulation_steps setting, may have unexpected behaviour."
)
# patch for backward compatibility, 305e3ea
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
if key in checkpoint["model_state_dict"]:
del checkpoint["model_state_dict"][key]
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint["optimizer_state_dict"])
if self.scheduler:
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
update = checkpoint["update"]
else:
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "update", "step"]
}
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
update = 0
del checkpoint
gc.collect()
return update
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
if self.log_samples:
from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef
vocoder = load_vocoder(
vocoder_name=self.vocoder_name, is_local=self.is_local_vocoder, local_path=self.local_vocoder_path
)
target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.target_sample_rate
log_samples_path = f"{self.checkpoint_path}/samples"
os.makedirs(log_samples_path, exist_ok=True)
if exists(resumable_with_seed):
generator = torch.Generator()
generator.manual_seed(resumable_with_seed)
else:
generator = None
if self.batch_size_type == "sample":
train_dataloader = DataLoader(
train_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
batch_size=self.batch_size_per_gpu,
shuffle=True,
generator=generator,
)
elif self.batch_size_type == "frame":
self.accelerator.even_batches = False
sampler = SequentialSampler(train_dataset)
batch_sampler = DynamicBatchSampler(
sampler,
self.batch_size_per_gpu,
max_samples=self.max_samples,
random_seed=resumable_with_seed, # This enables reproducible shuffling
drop_residual=False,
)
train_dataloader = DataLoader(
train_dataset,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
batch_sampler=batch_sampler,
)
else:
raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}")
# accelerator.prepare() dispatches batches to devices;
# which means the length of dataloader calculated before, should consider the number of devices
warmup_updates = (
self.num_warmup_updates * self.accelerator.num_processes
) # consider a fixed warmup steps while using accelerate multi-gpu ddp
# otherwise by default with split_batches=False, warmup steps change with num_processes
total_updates = math.ceil(len(train_dataloader) / self.grad_accumulation_steps) * self.epochs
decay_updates = total_updates - warmup_updates
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_updates)
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_updates)
self.scheduler = SequentialLR(
self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_updates]
)
train_dataloader, self.scheduler = self.accelerator.prepare(
train_dataloader, self.scheduler
) # actual multi_gpu updates = single_gpu updates / gpu nums
start_update = self.load_checkpoint()
global_update = start_update
if exists(resumable_with_seed):
orig_epoch_step = len(train_dataloader)
start_step = start_update * self.grad_accumulation_steps
skipped_epoch = int(start_step // orig_epoch_step)
skipped_batch = start_step % orig_epoch_step
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch)
else:
skipped_epoch = 0
for epoch in range(skipped_epoch, self.epochs):
self.model.train()
if exists(resumable_with_seed) and epoch == skipped_epoch:
progress_bar_initial = math.ceil(skipped_batch / self.grad_accumulation_steps)
current_dataloader = skipped_dataloader
else:
progress_bar_initial = 0
current_dataloader = train_dataloader
# Set epoch for the batch sampler if it exists
if hasattr(train_dataloader, "batch_sampler") and hasattr(train_dataloader.batch_sampler, "set_epoch"):
train_dataloader.batch_sampler.set_epoch(epoch)
progress_bar = tqdm(
range(math.ceil(len(train_dataloader) / self.grad_accumulation_steps)),
desc=f"Epoch {epoch + 1}/{self.epochs}",
unit="update",
disable=not self.accelerator.is_local_main_process,
initial=progress_bar_initial,
)
for batch in current_dataloader:
with self.accelerator.accumulate(self.model):
text_inputs = batch["text"]
mel_spec = batch["mel"].permute(0, 2, 1)
mel_lengths = batch["mel_lengths"]
# TODO. add duration predictor training
if self.duration_predictor is not None and self.accelerator.is_local_main_process:
dur_loss = self.duration_predictor(mel_spec, lens=batch.get("durations"))
self.accelerator.log({"duration loss": dur_loss.item()}, step=global_update)
loss, cond, pred = self.model(
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
)
self.accelerator.backward(loss)
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
if self.accelerator.sync_gradients:
if self.is_main:
self.ema_model.update()
global_update += 1
progress_bar.update(1)
progress_bar.set_postfix(update=str(global_update), loss=loss.item())
if self.accelerator.is_local_main_process:
self.accelerator.log(
{"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_update
)
if self.logger == "tensorboard":
self.writer.add_scalar("loss", loss.item(), global_update)
self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_update)
if global_update % self.last_per_updates == 0 and self.accelerator.sync_gradients:
self.save_checkpoint(global_update, last=True)
if global_update % self.save_per_updates == 0 and self.accelerator.sync_gradients:
self.save_checkpoint(global_update)
if self.log_samples and self.accelerator.is_local_main_process:
ref_audio_len = mel_lengths[0]
infer_text = [
text_inputs[0] + ([" "] if isinstance(text_inputs[0], list) else " ") + text_inputs[0]
]
with torch.inference_mode():
generated, _ = self.accelerator.unwrap_model(self.model).sample(
cond=mel_spec[0][:ref_audio_len].unsqueeze(0),
text=infer_text,
duration=ref_audio_len * 2,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated.to(torch.float32)
gen_mel_spec = generated[:, ref_audio_len:, :].permute(0, 2, 1).to(self.accelerator.device)
ref_mel_spec = batch["mel"][0].unsqueeze(0)
if self.vocoder_name == "vocos":
gen_audio = vocoder.decode(gen_mel_spec).cpu()
ref_audio = vocoder.decode(ref_mel_spec).cpu()
elif self.vocoder_name == "bigvgan":
gen_audio = vocoder(gen_mel_spec).squeeze(0).cpu()
ref_audio = vocoder(ref_mel_spec).squeeze(0).cpu()
torchaudio.save(
f"{log_samples_path}/update_{global_update}_gen.wav", gen_audio, target_sample_rate
)
torchaudio.save(
f"{log_samples_path}/update_{global_update}_ref.wav", ref_audio, target_sample_rate
)
self.model.train()
self.save_checkpoint(global_update, last=True)
self.accelerator.end_training()
|