File size: 20,429 Bytes
4dab15f
 
 
1a19e0f
fededd1
4dab15f
 
b6584c2
fededd1
4dab15f
 
 
fededd1
 
 
 
4dab15f
 
 
fededd1
4dab15f
 
 
 
 
 
 
 
 
 
 
 
1a19e0f
4dab15f
1a19e0f
4dab15f
 
 
 
 
 
b6584c2
1a19e0f
4dab15f
 
b6584c2
1a19e0f
4dab15f
 
 
fededd1
cf68f41
 
ebe57a6
4dab15f
 
 
b6584c2
 
 
4dab15f
 
b6584c2
4dab15f
 
 
 
6c9d0da
b6584c2
 
4dab15f
 
 
 
b6584c2
ebe57a6
 
4dab15f
 
 
1a19e0f
4dab15f
 
 
 
 
1a19e0f
ebe57a6
1a19e0f
 
 
ebe57a6
4dab15f
 
b6584c2
 
 
 
 
4dab15f
 
 
 
 
 
1a19e0f
 
 
 
 
 
4dab15f
 
 
1a19e0f
 
 
4dab15f
1a19e0f
4dab15f
 
 
 
cf68f41
 
fededd1
cf68f41
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a19e0f
4dab15f
 
 
 
 
 
 
1a19e0f
4dab15f
 
 
 
 
1a19e0f
4dab15f
1a19e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dab15f
 
 
 
 
1a19e0f
4dab15f
 
 
 
 
 
 
1a19e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dab15f
5659999
 
 
 
 
4dab15f
 
 
1a19e0f
 
 
 
 
 
 
 
61075cd
 
 
 
 
4dab15f
 
 
 
1a19e0f
4dab15f
 
 
 
1a19e0f
4dab15f
 
1a19e0f
4dab15f
 
 
1a19e0f
4dab15f
 
b6584c2
fededd1
b6584c2
cf68f41
 
 
fb41309
b6584c2
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
1a19e0f
4dab15f
 
 
 
 
 
 
1a19e0f
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
1a19e0f
4dab15f
 
 
1a19e0f
 
 
 
4dab15f
1a19e0f
4dab15f
 
 
1a19e0f
 
 
4dab15f
 
 
1a19e0f
4dab15f
 
 
 
 
 
 
 
 
1a19e0f
 
4dab15f
1a19e0f
 
 
 
 
 
 
 
 
43bc5dc
1a19e0f
 
 
 
4dab15f
1a19e0f
4dab15f
 
 
 
 
 
 
 
1a19e0f
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
1a19e0f
 
 
4dab15f
1a19e0f
 
 
4dab15f
 
1a19e0f
 
 
b6584c2
1a19e0f
 
4dab15f
1aefd03
 
 
1a19e0f
 
4dab15f
b6584c2
57b3db8
 
 
 
b6584c2
 
 
57b3db8
b6584c2
 
 
 
 
57b3db8
 
 
 
 
 
 
 
 
 
1a19e0f
 
 
 
 
 
6e26246
b6584c2
1a19e0f
4dab15f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from __future__ import annotations

import gc
import math
import os

import torch
import torchaudio
import wandb
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
from ema_pytorch import EMA
from torch.optim import AdamW
from torch.optim.lr_scheduler import LinearLR, SequentialLR
from torch.utils.data import DataLoader, Dataset, SequentialSampler
from tqdm import tqdm

from f5_tts.model import CFM
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
from f5_tts.model.utils import default, exists

# trainer


class Trainer:
    def __init__(
        self,
        model: CFM,
        epochs,
        learning_rate,
        num_warmup_updates=20000,
        save_per_updates=1000,
        keep_last_n_checkpoints: int = -1,  # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
        checkpoint_path=None,
        batch_size_per_gpu=32,
        batch_size_type: str = "sample",
        max_samples=32,
        grad_accumulation_steps=1,
        max_grad_norm=1.0,
        noise_scheduler: str | None = None,
        duration_predictor: torch.nn.Module | None = None,
        logger: str | None = "wandb",  # "wandb" | "tensorboard" | None
        wandb_project="test_f5-tts",
        wandb_run_name="test_run",
        wandb_resume_id: str = None,
        log_samples: bool = False,
        last_per_updates=None,
        accelerate_kwargs: dict = dict(),
        ema_kwargs: dict = dict(),
        bnb_optimizer: bool = False,
        mel_spec_type: str = "vocos",  # "vocos" | "bigvgan"
        is_local_vocoder: bool = False,  # use local path vocoder
        local_vocoder_path: str = "",  # local vocoder path
        model_cfg_dict: dict = dict(),  # training config
    ):
        ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)

        if logger == "wandb" and not wandb.api.api_key:
            logger = None
        self.log_samples = log_samples

        self.accelerator = Accelerator(
            log_with=logger if logger == "wandb" else None,
            kwargs_handlers=[ddp_kwargs],
            gradient_accumulation_steps=grad_accumulation_steps,
            **accelerate_kwargs,
        )

        self.logger = logger
        if self.logger == "wandb":
            if exists(wandb_resume_id):
                init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
            else:
                init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}

            if not model_cfg_dict:
                model_cfg_dict = {
                    "epochs": epochs,
                    "learning_rate": learning_rate,
                    "num_warmup_updates": num_warmup_updates,
                    "batch_size_per_gpu": batch_size_per_gpu,
                    "batch_size_type": batch_size_type,
                    "max_samples": max_samples,
                    "grad_accumulation_steps": grad_accumulation_steps,
                    "max_grad_norm": max_grad_norm,
                    "noise_scheduler": noise_scheduler,
                }
            model_cfg_dict["gpus"] = self.accelerator.num_processes
            self.accelerator.init_trackers(
                project_name=wandb_project,
                init_kwargs=init_kwargs,
                config=model_cfg_dict,
            )

        elif self.logger == "tensorboard":
            from torch.utils.tensorboard import SummaryWriter

            self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")

        self.model = model

        if self.is_main:
            self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
            self.ema_model.to(self.accelerator.device)

            print(f"Using logger: {logger}")
            if grad_accumulation_steps > 1:
                print(
                    "Gradient accumulation checkpointing with per_updates now, old logic per_steps used with before f992c4e"
                )

        self.epochs = epochs
        self.num_warmup_updates = num_warmup_updates
        self.save_per_updates = save_per_updates
        self.keep_last_n_checkpoints = keep_last_n_checkpoints
        self.last_per_updates = default(last_per_updates, save_per_updates)
        self.checkpoint_path = default(checkpoint_path, "ckpts/test_f5-tts")

        self.batch_size_per_gpu = batch_size_per_gpu
        self.batch_size_type = batch_size_type
        self.max_samples = max_samples
        self.grad_accumulation_steps = grad_accumulation_steps
        self.max_grad_norm = max_grad_norm

        # mel vocoder config
        self.vocoder_name = mel_spec_type
        self.is_local_vocoder = is_local_vocoder
        self.local_vocoder_path = local_vocoder_path

        self.noise_scheduler = noise_scheduler

        self.duration_predictor = duration_predictor

        if bnb_optimizer:
            import bitsandbytes as bnb

            self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate)
        else:
            self.optimizer = AdamW(model.parameters(), lr=learning_rate)
        self.model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer)

    @property
    def is_main(self):
        return self.accelerator.is_main_process

    def save_checkpoint(self, update, last=False):
        self.accelerator.wait_for_everyone()
        if self.is_main:
            checkpoint = dict(
                model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
                optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(),
                ema_model_state_dict=self.ema_model.state_dict(),
                scheduler_state_dict=self.scheduler.state_dict(),
                update=update,
            )
            if not os.path.exists(self.checkpoint_path):
                os.makedirs(self.checkpoint_path)
            if last:
                self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
                print(f"Saved last checkpoint at update {update}")
            else:
                if self.keep_last_n_checkpoints == 0:
                    return
                self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{update}.pt")
                if self.keep_last_n_checkpoints > 0:
                    # Updated logic to exclude pretrained model from rotation
                    checkpoints = [
                        f
                        for f in os.listdir(self.checkpoint_path)
                        if f.startswith("model_")
                        and not f.startswith("pretrained_")  # Exclude pretrained models
                        and f.endswith(".pt")
                        and f != "model_last.pt"
                    ]
                    checkpoints.sort(key=lambda x: int(x.split("_")[1].split(".")[0]))
                    while len(checkpoints) > self.keep_last_n_checkpoints:
                        oldest_checkpoint = checkpoints.pop(0)
                        os.remove(os.path.join(self.checkpoint_path, oldest_checkpoint))
                        print(f"Removed old checkpoint: {oldest_checkpoint}")

    def load_checkpoint(self):
        if (
            not exists(self.checkpoint_path)
            or not os.path.exists(self.checkpoint_path)
            or not any(filename.endswith((".pt", ".safetensors")) for filename in os.listdir(self.checkpoint_path))
        ):
            return 0

        self.accelerator.wait_for_everyone()
        if "model_last.pt" in os.listdir(self.checkpoint_path):
            latest_checkpoint = "model_last.pt"
        else:
            # Updated to consider pretrained models for loading but prioritize training checkpoints
            all_checkpoints = [
                f
                for f in os.listdir(self.checkpoint_path)
                if (f.startswith("model_") or f.startswith("pretrained_")) and f.endswith((".pt", ".safetensors"))
            ]

            # First try to find regular training checkpoints
            training_checkpoints = [f for f in all_checkpoints if f.startswith("model_") and f != "model_last.pt"]
            if training_checkpoints:
                latest_checkpoint = sorted(
                    training_checkpoints,
                    key=lambda x: int("".join(filter(str.isdigit, x))),
                )[-1]
            else:
                # If no training checkpoints, use pretrained model
                latest_checkpoint = next(f for f in all_checkpoints if f.startswith("pretrained_"))

        if latest_checkpoint.endswith(".safetensors"):  # always a pretrained checkpoint
            from safetensors.torch import load_file

            checkpoint = load_file(f"{self.checkpoint_path}/{latest_checkpoint}", device="cpu")
            checkpoint = {"ema_model_state_dict": checkpoint}
        elif latest_checkpoint.endswith(".pt"):
            # checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device)  # rather use accelerator.load_state ಥ_ಥ
            checkpoint = torch.load(
                f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu"
            )

        # patch for backward compatibility, 305e3ea
        for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]:
            if key in checkpoint["ema_model_state_dict"]:
                del checkpoint["ema_model_state_dict"][key]

        if self.is_main:
            self.ema_model.load_state_dict(checkpoint["ema_model_state_dict"])

        if "update" in checkpoint or "step" in checkpoint:
            # patch for backward compatibility, with before f992c4e
            if "step" in checkpoint:
                checkpoint["update"] = checkpoint["step"] // self.grad_accumulation_steps
                if self.grad_accumulation_steps > 1 and self.is_main:
                    print(
                        "F5-TTS WARNING: Loading checkpoint saved with per_steps logic (before f992c4e), will convert to per_updates according to grad_accumulation_steps setting, may have unexpected behaviour."
                    )
            # patch for backward compatibility, 305e3ea
            for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
                if key in checkpoint["model_state_dict"]:
                    del checkpoint["model_state_dict"][key]

            self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
            self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint["optimizer_state_dict"])
            if self.scheduler:
                self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
            update = checkpoint["update"]
        else:
            checkpoint["model_state_dict"] = {
                k.replace("ema_model.", ""): v
                for k, v in checkpoint["ema_model_state_dict"].items()
                if k not in ["initted", "update", "step"]
            }
            self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
            update = 0

        del checkpoint
        gc.collect()
        return update

    def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
        if self.log_samples:
            from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef

            vocoder = load_vocoder(
                vocoder_name=self.vocoder_name, is_local=self.is_local_vocoder, local_path=self.local_vocoder_path
            )
            target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.target_sample_rate
            log_samples_path = f"{self.checkpoint_path}/samples"
            os.makedirs(log_samples_path, exist_ok=True)

        if exists(resumable_with_seed):
            generator = torch.Generator()
            generator.manual_seed(resumable_with_seed)
        else:
            generator = None

        if self.batch_size_type == "sample":
            train_dataloader = DataLoader(
                train_dataset,
                collate_fn=collate_fn,
                num_workers=num_workers,
                pin_memory=True,
                persistent_workers=True,
                batch_size=self.batch_size_per_gpu,
                shuffle=True,
                generator=generator,
            )
        elif self.batch_size_type == "frame":
            self.accelerator.even_batches = False
            sampler = SequentialSampler(train_dataset)
            batch_sampler = DynamicBatchSampler(
                sampler,
                self.batch_size_per_gpu,
                max_samples=self.max_samples,
                random_seed=resumable_with_seed,  # This enables reproducible shuffling
                drop_residual=False,
            )
            train_dataloader = DataLoader(
                train_dataset,
                collate_fn=collate_fn,
                num_workers=num_workers,
                pin_memory=True,
                persistent_workers=True,
                batch_sampler=batch_sampler,
            )
        else:
            raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}")

        #  accelerator.prepare() dispatches batches to devices;
        #  which means the length of dataloader calculated before, should consider the number of devices
        warmup_updates = (
            self.num_warmup_updates * self.accelerator.num_processes
        )  # consider a fixed warmup steps while using accelerate multi-gpu ddp
        # otherwise by default with split_batches=False, warmup steps change with num_processes
        total_updates = math.ceil(len(train_dataloader) / self.grad_accumulation_steps) * self.epochs
        decay_updates = total_updates - warmup_updates
        warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_updates)
        decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_updates)
        self.scheduler = SequentialLR(
            self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_updates]
        )
        train_dataloader, self.scheduler = self.accelerator.prepare(
            train_dataloader, self.scheduler
        )  # actual multi_gpu updates = single_gpu updates / gpu nums
        start_update = self.load_checkpoint()
        global_update = start_update

        if exists(resumable_with_seed):
            orig_epoch_step = len(train_dataloader)
            start_step = start_update * self.grad_accumulation_steps
            skipped_epoch = int(start_step // orig_epoch_step)
            skipped_batch = start_step % orig_epoch_step
            skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch)
        else:
            skipped_epoch = 0

        for epoch in range(skipped_epoch, self.epochs):
            self.model.train()
            if exists(resumable_with_seed) and epoch == skipped_epoch:
                progress_bar_initial = math.ceil(skipped_batch / self.grad_accumulation_steps)
                current_dataloader = skipped_dataloader
            else:
                progress_bar_initial = 0
                current_dataloader = train_dataloader

            # Set epoch for the batch sampler if it exists
            if hasattr(train_dataloader, "batch_sampler") and hasattr(train_dataloader.batch_sampler, "set_epoch"):
                train_dataloader.batch_sampler.set_epoch(epoch)

            progress_bar = tqdm(
                range(math.ceil(len(train_dataloader) / self.grad_accumulation_steps)),
                desc=f"Epoch {epoch + 1}/{self.epochs}",
                unit="update",
                disable=not self.accelerator.is_local_main_process,
                initial=progress_bar_initial,
            )

            for batch in current_dataloader:
                with self.accelerator.accumulate(self.model):
                    text_inputs = batch["text"]
                    mel_spec = batch["mel"].permute(0, 2, 1)
                    mel_lengths = batch["mel_lengths"]

                    # TODO. add duration predictor training
                    if self.duration_predictor is not None and self.accelerator.is_local_main_process:
                        dur_loss = self.duration_predictor(mel_spec, lens=batch.get("durations"))
                        self.accelerator.log({"duration loss": dur_loss.item()}, step=global_update)

                    loss, cond, pred = self.model(
                        mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
                    )
                    self.accelerator.backward(loss)

                    if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
                        self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)

                    self.optimizer.step()
                    self.scheduler.step()
                    self.optimizer.zero_grad()

                if self.accelerator.sync_gradients:
                    if self.is_main:
                        self.ema_model.update()

                    global_update += 1
                    progress_bar.update(1)
                    progress_bar.set_postfix(update=str(global_update), loss=loss.item())

                if self.accelerator.is_local_main_process:
                    self.accelerator.log(
                        {"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_update
                    )
                    if self.logger == "tensorboard":
                        self.writer.add_scalar("loss", loss.item(), global_update)
                        self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_update)

                if global_update % self.last_per_updates == 0 and self.accelerator.sync_gradients:
                    self.save_checkpoint(global_update, last=True)

                if global_update % self.save_per_updates == 0 and self.accelerator.sync_gradients:
                    self.save_checkpoint(global_update)

                    if self.log_samples and self.accelerator.is_local_main_process:
                        ref_audio_len = mel_lengths[0]
                        infer_text = [
                            text_inputs[0] + ([" "] if isinstance(text_inputs[0], list) else " ") + text_inputs[0]
                        ]
                        with torch.inference_mode():
                            generated, _ = self.accelerator.unwrap_model(self.model).sample(
                                cond=mel_spec[0][:ref_audio_len].unsqueeze(0),
                                text=infer_text,
                                duration=ref_audio_len * 2,
                                steps=nfe_step,
                                cfg_strength=cfg_strength,
                                sway_sampling_coef=sway_sampling_coef,
                            )
                            generated = generated.to(torch.float32)
                            gen_mel_spec = generated[:, ref_audio_len:, :].permute(0, 2, 1).to(self.accelerator.device)
                            ref_mel_spec = batch["mel"][0].unsqueeze(0)
                            if self.vocoder_name == "vocos":
                                gen_audio = vocoder.decode(gen_mel_spec).cpu()
                                ref_audio = vocoder.decode(ref_mel_spec).cpu()
                            elif self.vocoder_name == "bigvgan":
                                gen_audio = vocoder(gen_mel_spec).squeeze(0).cpu()
                                ref_audio = vocoder(ref_mel_spec).squeeze(0).cpu()

                        torchaudio.save(
                            f"{log_samples_path}/update_{global_update}_gen.wav", gen_audio, target_sample_rate
                        )
                        torchaudio.save(
                            f"{log_samples_path}/update_{global_update}_ref.wav", ref_audio, target_sample_rate
                        )
                        self.model.train()

        self.save_checkpoint(global_update, last=True)

        self.accelerator.end_training()