Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,069 Bytes
daaf1ba 1a19e0f aa59806 1a19e0f aa59806 1a19e0f daaf1ba aa59806 1a19e0f 43bc5dc 1a19e0f aa59806 1a19e0f daaf1ba 1a19e0f daaf1ba 1a19e0f 43bc5dc 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 1a19e0f aa59806 daaf1ba 1a19e0f daaf1ba 1a19e0f daaf1ba aa59806 daaf1ba aa59806 1a19e0f daaf1ba aa59806 daaf1ba aa59806 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import argparse
import gc
import logging
import numpy as np
import queue
import socket
import struct
import threading
import traceback
import wave
from importlib.resources import files
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from hydra.utils import get_class
from omegaconf import OmegaConf
from f5_tts.infer.utils_infer import (
chunk_text,
preprocess_ref_audio_text,
load_vocoder,
load_model,
infer_batch_process,
)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class AudioFileWriterThread(threading.Thread):
"""Threaded file writer to avoid blocking the TTS streaming process."""
def __init__(self, output_file, sampling_rate):
super().__init__()
self.output_file = output_file
self.sampling_rate = sampling_rate
self.queue = queue.Queue()
self.stop_event = threading.Event()
self.audio_data = []
def run(self):
"""Process queued audio data and write it to a file."""
logger.info("AudioFileWriterThread started.")
with wave.open(self.output_file, "wb") as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(self.sampling_rate)
while not self.stop_event.is_set() or not self.queue.empty():
try:
chunk = self.queue.get(timeout=0.1)
if chunk is not None:
chunk = np.int16(chunk * 32767)
self.audio_data.append(chunk)
wf.writeframes(chunk.tobytes())
except queue.Empty:
continue
def add_chunk(self, chunk):
"""Add a new chunk to the queue."""
self.queue.put(chunk)
def stop(self):
"""Stop writing and ensure all queued data is written."""
self.stop_event.set()
self.join()
logger.info("Audio writing completed.")
class TTSStreamingProcessor:
def __init__(self, model, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32):
self.device = device or (
"cuda"
if torch.cuda.is_available()
else "xpu"
if torch.xpu.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
self.model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
self.model_arc = model_cfg.model.arch
self.mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
self.sampling_rate = model_cfg.model.mel_spec.target_sample_rate
self.model = self.load_ema_model(ckpt_file, vocab_file, dtype)
self.vocoder = self.load_vocoder_model()
self.update_reference(ref_audio, ref_text)
self._warm_up()
self.file_writer_thread = None
self.first_package = True
def load_ema_model(self, ckpt_file, vocab_file, dtype):
return load_model(
self.model_cls,
self.model_arc,
ckpt_path=ckpt_file,
mel_spec_type=self.mel_spec_type,
vocab_file=vocab_file,
ode_method="euler",
use_ema=True,
device=self.device,
).to(self.device, dtype=dtype)
def load_vocoder_model(self):
return load_vocoder(vocoder_name=self.mel_spec_type, is_local=False, local_path=None, device=self.device)
def update_reference(self, ref_audio, ref_text):
self.ref_audio, self.ref_text = preprocess_ref_audio_text(ref_audio, ref_text)
self.audio, self.sr = torchaudio.load(self.ref_audio)
ref_audio_duration = self.audio.shape[-1] / self.sr
ref_text_byte_len = len(self.ref_text.encode("utf-8"))
self.max_chars = int(ref_text_byte_len / (ref_audio_duration) * (25 - ref_audio_duration))
self.few_chars = int(ref_text_byte_len / (ref_audio_duration) * (25 - ref_audio_duration) / 2)
self.min_chars = int(ref_text_byte_len / (ref_audio_duration) * (25 - ref_audio_duration) / 4)
def _warm_up(self):
logger.info("Warming up the model...")
gen_text = "Warm-up text for the model."
for _ in infer_batch_process(
(self.audio, self.sr),
self.ref_text,
[gen_text],
self.model,
self.vocoder,
progress=None,
device=self.device,
streaming=True,
):
pass
logger.info("Warm-up completed.")
def generate_stream(self, text, conn):
text_batches = chunk_text(text, max_chars=self.max_chars)
if self.first_package:
text_batches = chunk_text(text_batches[0], max_chars=self.few_chars) + text_batches[1:]
text_batches = chunk_text(text_batches[0], max_chars=self.min_chars) + text_batches[1:]
self.first_package = False
audio_stream = infer_batch_process(
(self.audio, self.sr),
self.ref_text,
text_batches,
self.model,
self.vocoder,
progress=None,
device=self.device,
streaming=True,
chunk_size=2048,
)
# Reset the file writer thread
if self.file_writer_thread is not None:
self.file_writer_thread.stop()
self.file_writer_thread = AudioFileWriterThread("output.wav", self.sampling_rate)
self.file_writer_thread.start()
for audio_chunk, _ in audio_stream:
if len(audio_chunk) > 0:
logger.info(f"Generated audio chunk of size: {len(audio_chunk)}")
# Send audio chunk via socket
conn.sendall(struct.pack(f"{len(audio_chunk)}f", *audio_chunk))
# Write to file asynchronously
self.file_writer_thread.add_chunk(audio_chunk)
logger.info("Finished sending audio stream.")
conn.sendall(b"END") # Send end signal
# Ensure all audio data is written before exiting
self.file_writer_thread.stop()
def handle_client(conn, processor):
try:
with conn:
conn.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)
while True:
data = conn.recv(1024)
if not data:
processor.first_package = True
break
data_str = data.decode("utf-8").strip()
logger.info(f"Received text: {data_str}")
try:
processor.generate_stream(data_str, conn)
except Exception as inner_e:
logger.error(f"Error during processing: {inner_e}")
traceback.print_exc()
break
except Exception as e:
logger.error(f"Error handling client: {e}")
traceback.print_exc()
def start_server(host, port, processor):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((host, port))
s.listen()
logger.info(f"Server started on {host}:{port}")
while True:
conn, addr = s.accept()
logger.info(f"Connected by {addr}")
handle_client(conn, processor)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", default="0.0.0.0")
parser.add_argument("--port", default=9998)
parser.add_argument(
"--model",
default="F5TTS_v1_Base",
help="The model name, e.g. F5TTS_v1_Base",
)
parser.add_argument(
"--ckpt_file",
default=str(hf_hub_download(repo_id="SWivid/F5-TTS", filename="F5TTS_v1_Base/model_1250000.safetensors")),
help="Path to the model checkpoint file",
)
parser.add_argument(
"--vocab_file",
default="",
help="Path to the vocab file if customized",
)
parser.add_argument(
"--ref_audio",
default=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
help="Reference audio to provide model with speaker characteristics",
)
parser.add_argument(
"--ref_text",
default="",
help="Reference audio subtitle, leave empty to auto-transcribe",
)
parser.add_argument("--device", default=None, help="Device to run the model on")
parser.add_argument("--dtype", default=torch.float32, help="Data type to use for model inference")
args = parser.parse_args()
try:
# Initialize the processor with the model and vocoder
processor = TTSStreamingProcessor(
model=args.model,
ckpt_file=args.ckpt_file,
vocab_file=args.vocab_file,
ref_audio=args.ref_audio,
ref_text=args.ref_text,
device=args.device,
dtype=args.dtype,
)
# Start the server
start_server(args.host, args.port, processor)
except KeyboardInterrupt:
gc.collect()
|