E2-F5-TTS / src /f5_tts /infer /infer_cli.py
mrfakename's picture
Sync from GitHub repo
20d1765 verified
import argparse
import codecs
import os
import re
from datetime import datetime
from importlib.resources import files
from pathlib import Path
import numpy as np
import soundfile as sf
import tomli
from cached_path import cached_path
from hydra.utils import get_class
from omegaconf import OmegaConf
from f5_tts.infer.utils_infer import (
mel_spec_type,
target_rms,
cross_fade_duration,
nfe_step,
cfg_strength,
sway_sampling_coef,
speed,
fix_duration,
device,
infer_process,
load_model,
load_vocoder,
preprocess_ref_audio_text,
remove_silence_for_generated_wav,
)
parser = argparse.ArgumentParser(
prog="python3 infer-cli.py",
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
epilog="Specify options above to override one or more settings from config.",
)
parser.add_argument(
"-c",
"--config",
type=str,
default=os.path.join(files("f5_tts").joinpath("infer/examples/basic"), "basic.toml"),
help="The configuration file, default see infer/examples/basic/basic.toml",
)
# Note. Not to provide default value here in order to read default from config file
parser.add_argument(
"-m",
"--model",
type=str,
help="The model name: F5TTS_v1_Base | F5TTS_Base | E2TTS_Base | etc.",
)
parser.add_argument(
"-mc",
"--model_cfg",
type=str,
help="The path to F5-TTS model config file .yaml",
)
parser.add_argument(
"-p",
"--ckpt_file",
type=str,
help="The path to model checkpoint .pt, leave blank to use default",
)
parser.add_argument(
"-v",
"--vocab_file",
type=str,
help="The path to vocab file .txt, leave blank to use default",
)
parser.add_argument(
"-r",
"--ref_audio",
type=str,
help="The reference audio file.",
)
parser.add_argument(
"-s",
"--ref_text",
type=str,
help="The transcript/subtitle for the reference audio",
)
parser.add_argument(
"-t",
"--gen_text",
type=str,
help="The text to make model synthesize a speech",
)
parser.add_argument(
"-f",
"--gen_file",
type=str,
help="The file with text to generate, will ignore --gen_text",
)
parser.add_argument(
"-o",
"--output_dir",
type=str,
help="The path to output folder",
)
parser.add_argument(
"-w",
"--output_file",
type=str,
help="The name of output file",
)
parser.add_argument(
"--save_chunk",
action="store_true",
help="To save each audio chunks during inference",
)
parser.add_argument(
"--remove_silence",
action="store_true",
help="To remove long silence found in ouput",
)
parser.add_argument(
"--load_vocoder_from_local",
action="store_true",
help="To load vocoder from local dir, default to ../checkpoints/vocos-mel-24khz",
)
parser.add_argument(
"--vocoder_name",
type=str,
choices=["vocos", "bigvgan"],
help=f"Used vocoder name: vocos | bigvgan, default {mel_spec_type}",
)
parser.add_argument(
"--target_rms",
type=float,
help=f"Target output speech loudness normalization value, default {target_rms}",
)
parser.add_argument(
"--cross_fade_duration",
type=float,
help=f"Duration of cross-fade between audio segments in seconds, default {cross_fade_duration}",
)
parser.add_argument(
"--nfe_step",
type=int,
help=f"The number of function evaluation (denoising steps), default {nfe_step}",
)
parser.add_argument(
"--cfg_strength",
type=float,
help=f"Classifier-free guidance strength, default {cfg_strength}",
)
parser.add_argument(
"--sway_sampling_coef",
type=float,
help=f"Sway Sampling coefficient, default {sway_sampling_coef}",
)
parser.add_argument(
"--speed",
type=float,
help=f"The speed of the generated audio, default {speed}",
)
parser.add_argument(
"--fix_duration",
type=float,
help=f"Fix the total duration (ref and gen audios) in seconds, default {fix_duration}",
)
parser.add_argument(
"--device",
type=str,
help="Specify the device to run on",
)
args = parser.parse_args()
# config file
config = tomli.load(open(args.config, "rb"))
# command-line interface parameters
model = args.model or config.get("model", "F5TTS_v1_Base")
ckpt_file = args.ckpt_file or config.get("ckpt_file", "")
vocab_file = args.vocab_file or config.get("vocab_file", "")
ref_audio = args.ref_audio or config.get("ref_audio", "infer/examples/basic/basic_ref_en.wav")
ref_text = (
args.ref_text
if args.ref_text is not None
else config.get("ref_text", "Some call me nature, others call me mother nature.")
)
gen_text = args.gen_text or config.get("gen_text", "Here we generate something just for test.")
gen_file = args.gen_file or config.get("gen_file", "")
output_dir = args.output_dir or config.get("output_dir", "tests")
output_file = args.output_file or config.get(
"output_file", f"infer_cli_{datetime.now().strftime(r'%Y%m%d_%H%M%S')}.wav"
)
save_chunk = args.save_chunk or config.get("save_chunk", False)
remove_silence = args.remove_silence or config.get("remove_silence", False)
load_vocoder_from_local = args.load_vocoder_from_local or config.get("load_vocoder_from_local", False)
vocoder_name = args.vocoder_name or config.get("vocoder_name", mel_spec_type)
target_rms = args.target_rms or config.get("target_rms", target_rms)
cross_fade_duration = args.cross_fade_duration or config.get("cross_fade_duration", cross_fade_duration)
nfe_step = args.nfe_step or config.get("nfe_step", nfe_step)
cfg_strength = args.cfg_strength or config.get("cfg_strength", cfg_strength)
sway_sampling_coef = args.sway_sampling_coef or config.get("sway_sampling_coef", sway_sampling_coef)
speed = args.speed or config.get("speed", speed)
fix_duration = args.fix_duration or config.get("fix_duration", fix_duration)
device = args.device or config.get("device", device)
# patches for pip pkg user
if "infer/examples/" in ref_audio:
ref_audio = str(files("f5_tts").joinpath(f"{ref_audio}"))
if "infer/examples/" in gen_file:
gen_file = str(files("f5_tts").joinpath(f"{gen_file}"))
if "voices" in config:
for voice in config["voices"]:
voice_ref_audio = config["voices"][voice]["ref_audio"]
if "infer/examples/" in voice_ref_audio:
config["voices"][voice]["ref_audio"] = str(files("f5_tts").joinpath(f"{voice_ref_audio}"))
# ignore gen_text if gen_file provided
if gen_file:
gen_text = codecs.open(gen_file, "r", "utf-8").read()
# output path
wave_path = Path(output_dir) / output_file
# spectrogram_path = Path(output_dir) / "infer_cli_out.png"
if save_chunk:
output_chunk_dir = os.path.join(output_dir, f"{Path(output_file).stem}_chunks")
if not os.path.exists(output_chunk_dir):
os.makedirs(output_chunk_dir)
# load vocoder
if vocoder_name == "vocos":
vocoder_local_path = "../checkpoints/vocos-mel-24khz"
elif vocoder_name == "bigvgan":
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
vocoder = load_vocoder(
vocoder_name=vocoder_name, is_local=load_vocoder_from_local, local_path=vocoder_local_path, device=device
)
# load TTS model
model_cfg = OmegaConf.load(
args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
)
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
repo_name, ckpt_step, ckpt_type = "F5-TTS", 1250000, "safetensors"
if model != "F5TTS_Base":
assert vocoder_name == model_cfg.model.mel_spec.mel_spec_type
# override for previous models
if model == "F5TTS_Base":
if vocoder_name == "vocos":
ckpt_step = 1200000
elif vocoder_name == "bigvgan":
model = "F5TTS_Base_bigvgan"
ckpt_type = "pt"
elif model == "E2TTS_Base":
repo_name = "E2-TTS"
ckpt_step = 1200000
if not ckpt_file:
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{model}/model_{ckpt_step}.{ckpt_type}"))
print(f"Using {model}...")
ema_model = load_model(
model_cls, model_arc, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file, device=device
)
# inference process
def main():
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
if "voices" not in config:
voices = {"main": main_voice}
else:
voices = config["voices"]
voices["main"] = main_voice
for voice in voices:
print("Voice:", voice)
print("ref_audio ", voices[voice]["ref_audio"])
voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
voices[voice]["ref_audio"], voices[voice]["ref_text"]
)
print("ref_audio_", voices[voice]["ref_audio"], "\n\n")
generated_audio_segments = []
reg1 = r"(?=\[\w+\])"
chunks = re.split(reg1, gen_text)
reg2 = r"\[(\w+)\]"
for text in chunks:
if not text.strip():
continue
match = re.match(reg2, text)
if match:
voice = match[1]
else:
print("No voice tag found, using main.")
voice = "main"
if voice not in voices:
print(f"Voice {voice} not found, using main.")
voice = "main"
text = re.sub(reg2, "", text)
ref_audio_ = voices[voice]["ref_audio"]
ref_text_ = voices[voice]["ref_text"]
gen_text_ = text.strip()
print(f"Voice: {voice}")
audio_segment, final_sample_rate, spectragram = infer_process(
ref_audio_,
ref_text_,
gen_text_,
ema_model,
vocoder,
mel_spec_type=vocoder_name,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
speed=speed,
fix_duration=fix_duration,
device=device,
)
generated_audio_segments.append(audio_segment)
if save_chunk:
if len(gen_text_) > 200:
gen_text_ = gen_text_[:200] + " ... "
sf.write(
os.path.join(output_chunk_dir, f"{len(generated_audio_segments) - 1}_{gen_text_}.wav"),
audio_segment,
final_sample_rate,
)
if generated_audio_segments:
final_wave = np.concatenate(generated_audio_segments)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(wave_path, "wb") as f:
sf.write(f.name, final_wave, final_sample_rate)
# Remove silence
if remove_silence:
remove_silence_for_generated_wav(f.name)
print(f.name)
if __name__ == "__main__":
main()