E2-F5-TTS / src /f5_tts /train /datasets /prepare_csv_wavs.py
mrfakename's picture
Sync from GitHub repo
0bebc31 verified
import concurrent.futures
import multiprocessing
import os
import shutil
import signal
import subprocess # For invoking ffprobe
import sys
from contextlib import contextmanager
sys.path.append(os.getcwd())
import argparse
import csv
import json
from importlib.resources import files
from pathlib import Path
import torchaudio
from datasets.arrow_writer import ArrowWriter
from tqdm import tqdm
from f5_tts.model.utils import convert_char_to_pinyin
PRETRAINED_VOCAB_PATH = files("f5_tts").joinpath("../../data/Emilia_ZH_EN_pinyin/vocab.txt")
def is_csv_wavs_format(input_dataset_dir):
fpath = Path(input_dataset_dir)
metadata = fpath / "metadata.csv"
wavs = fpath / "wavs"
return metadata.exists() and metadata.is_file() and wavs.exists() and wavs.is_dir()
# Configuration constants
BATCH_SIZE = 100 # Batch size for text conversion
MAX_WORKERS = max(1, multiprocessing.cpu_count() - 1) # Leave one CPU free
THREAD_NAME_PREFIX = "AudioProcessor"
CHUNK_SIZE = 100 # Number of files to process per worker batch
executor = None # Global executor for cleanup
@contextmanager
def graceful_exit():
"""Context manager for graceful shutdown on signals"""
def signal_handler(signum, frame):
print("\nReceived signal to terminate. Cleaning up...")
if executor is not None:
print("Shutting down executor...")
executor.shutdown(wait=False, cancel_futures=True)
sys.exit(1)
# Set up signal handlers
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
yield
finally:
if executor is not None:
executor.shutdown(wait=False)
def process_audio_file(audio_path, text, polyphone):
"""Process a single audio file by checking its existence and extracting duration."""
if not Path(audio_path).exists():
print(f"audio {audio_path} not found, skipping")
return None
try:
audio_duration = get_audio_duration(audio_path)
if audio_duration <= 0:
raise ValueError(f"Duration {audio_duration} is non-positive.")
return (audio_path, text, audio_duration)
except Exception as e:
print(f"Warning: Failed to process {audio_path} due to error: {e}. Skipping corrupt file.")
return None
def batch_convert_texts(texts, polyphone, batch_size=BATCH_SIZE):
"""Convert a list of texts to pinyin in batches."""
converted_texts = []
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
converted_batch = convert_char_to_pinyin(batch, polyphone=polyphone)
converted_texts.extend(converted_batch)
return converted_texts
def prepare_csv_wavs_dir(input_dir, num_workers=None):
global executor
assert is_csv_wavs_format(input_dir), f"not csv_wavs format: {input_dir}"
input_dir = Path(input_dir)
metadata_path = input_dir / "metadata.csv"
audio_path_text_pairs = read_audio_text_pairs(metadata_path.as_posix())
polyphone = True
total_files = len(audio_path_text_pairs)
# Use provided worker count or calculate optimal number
worker_count = num_workers if num_workers is not None else min(MAX_WORKERS, total_files)
print(f"\nProcessing {total_files} audio files using {worker_count} workers...")
with graceful_exit():
# Initialize thread pool with optimized settings
with concurrent.futures.ThreadPoolExecutor(
max_workers=worker_count, thread_name_prefix=THREAD_NAME_PREFIX
) as exec:
executor = exec
results = []
# Process files in chunks for better efficiency
for i in range(0, len(audio_path_text_pairs), CHUNK_SIZE):
chunk = audio_path_text_pairs[i : i + CHUNK_SIZE]
# Submit futures in order
chunk_futures = [executor.submit(process_audio_file, pair[0], pair[1], polyphone) for pair in chunk]
# Iterate over futures in the original submission order to preserve ordering
for future in tqdm(
chunk_futures,
total=len(chunk),
desc=f"Processing chunk {i // CHUNK_SIZE + 1}/{(total_files + CHUNK_SIZE - 1) // CHUNK_SIZE}",
):
try:
result = future.result()
if result is not None:
results.append(result)
except Exception as e:
print(f"Error processing file: {e}")
executor = None
# Filter out failed results
processed = [res for res in results if res is not None]
if not processed:
raise RuntimeError("No valid audio files were processed!")
# Batch process text conversion
raw_texts = [item[1] for item in processed]
converted_texts = batch_convert_texts(raw_texts, polyphone, batch_size=BATCH_SIZE)
# Prepare final results
sub_result = []
durations = []
vocab_set = set()
for (audio_path, _, duration), conv_text in zip(processed, converted_texts):
sub_result.append({"audio_path": audio_path, "text": conv_text, "duration": duration})
durations.append(duration)
vocab_set.update(list(conv_text))
return sub_result, durations, vocab_set
def get_audio_duration(audio_path, timeout=5):
"""
Get the duration of an audio file in seconds using ffmpeg's ffprobe.
Falls back to torchaudio.load() if ffprobe fails.
"""
try:
cmd = [
"ffprobe",
"-v",
"error",
"-show_entries",
"format=duration",
"-of",
"default=noprint_wrappers=1:nokey=1",
audio_path,
]
result = subprocess.run(
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=True, timeout=timeout
)
duration_str = result.stdout.strip()
if duration_str:
return float(duration_str)
raise ValueError("Empty duration string from ffprobe.")
except (subprocess.TimeoutExpired, subprocess.SubprocessError, ValueError) as e:
print(f"Warning: ffprobe failed for {audio_path} with error: {e}. Falling back to torchaudio.")
try:
audio, sample_rate = torchaudio.load(audio_path)
return audio.shape[1] / sample_rate
except Exception as e:
raise RuntimeError(f"Both ffprobe and torchaudio failed for {audio_path}: {e}")
def read_audio_text_pairs(csv_file_path):
audio_text_pairs = []
parent = Path(csv_file_path).parent
with open(csv_file_path, mode="r", newline="", encoding="utf-8-sig") as csvfile:
reader = csv.reader(csvfile, delimiter="|")
next(reader) # Skip the header row
for row in reader:
if len(row) >= 2:
audio_file = row[0].strip() # First column: audio file path
text = row[1].strip() # Second column: text
audio_file_path = parent / audio_file
audio_text_pairs.append((audio_file_path.as_posix(), text))
return audio_text_pairs
def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_finetune):
out_dir = Path(out_dir)
out_dir.mkdir(exist_ok=True, parents=True)
print(f"\nSaving to {out_dir} ...")
# Save dataset with improved batch size for better I/O performance
raw_arrow_path = out_dir / "raw.arrow"
with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=100) as writer:
for line in tqdm(result, desc="Writing to raw.arrow ..."):
writer.write(line)
# Save durations to JSON
dur_json_path = out_dir / "duration.json"
with open(dur_json_path.as_posix(), "w", encoding="utf-8") as f:
json.dump({"duration": duration_list}, f, ensure_ascii=False)
# Handle vocab file - write only once based on finetune flag
voca_out_path = out_dir / "vocab.txt"
if is_finetune:
file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix()
shutil.copy2(file_vocab_finetune, voca_out_path)
else:
with open(voca_out_path.as_posix(), "w") as f:
for vocab in sorted(text_vocab_set):
f.write(vocab + "\n")
dataset_name = out_dir.stem
print(f"\nFor {dataset_name}, sample count: {len(result)}")
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True, num_workers: int = None):
if is_finetune:
assert PRETRAINED_VOCAB_PATH.exists(), f"pretrained vocab.txt not found: {PRETRAINED_VOCAB_PATH}"
sub_result, durations, vocab_set = prepare_csv_wavs_dir(inp_dir, num_workers=num_workers)
save_prepped_dataset(out_dir, sub_result, durations, vocab_set, is_finetune)
def cli():
try:
# Before processing, check if ffprobe is available.
if shutil.which("ffprobe") is None:
print(
"Warning: ffprobe is not available. Duration extraction will rely on torchaudio (which may be slower)."
)
# Usage examples in help text
parser = argparse.ArgumentParser(
description="Prepare and save dataset.",
epilog="""
Examples:
# For fine-tuning (default):
python prepare_csv_wavs.py /input/dataset/path /output/dataset/path
# For pre-training:
python prepare_csv_wavs.py /input/dataset/path /output/dataset/path --pretrain
# With custom worker count:
python prepare_csv_wavs.py /input/dataset/path /output/dataset/path --workers 4
""",
)
parser.add_argument("inp_dir", type=str, help="Input directory containing the data.")
parser.add_argument("out_dir", type=str, help="Output directory to save the prepared data.")
parser.add_argument("--pretrain", action="store_true", help="Enable for new pretrain, otherwise is a fine-tune")
parser.add_argument("--workers", type=int, help=f"Number of worker threads (default: {MAX_WORKERS})")
args = parser.parse_args()
prepare_and_save_set(args.inp_dir, args.out_dir, is_finetune=not args.pretrain, num_workers=args.workers)
except KeyboardInterrupt:
print("\nOperation cancelled by user. Cleaning up...")
if executor is not None:
executor.shutdown(wait=False, cancel_futures=True)
sys.exit(1)
if __name__ == "__main__":
cli()