Spaces:
Running
on
Zero
Running
on
Zero
# put in src/f5_tts/train/datasets/prepare_emilia_v2.py | |
# prepares Emilia dataset with the new format w/ Emilia-YODAS | |
import json | |
import os | |
from concurrent.futures import ProcessPoolExecutor | |
from importlib.resources import files | |
from pathlib import Path | |
from datasets.arrow_writer import ArrowWriter | |
from tqdm import tqdm | |
from f5_tts.model.utils import repetition_found | |
# Define filters for exclusion | |
out_en = set() | |
en_filters = ["ا", "い", "て"] | |
def process_audio_directory(audio_dir): | |
sub_result, durations, vocab_set = [], [], set() | |
bad_case_en = 0 | |
for file in audio_dir.iterdir(): | |
if file.suffix == ".json": | |
with open(file, "r") as f: | |
obj = json.load(f) | |
text = obj["text"] | |
if any(f in text for f in en_filters) or repetition_found(text, length=4): | |
bad_case_en += 1 | |
continue | |
duration = obj["duration"] | |
audio_file = file.with_suffix(".mp3") | |
if audio_file.exists(): | |
sub_result.append({"audio_path": str(audio_file), "text": text, "duration": duration}) | |
durations.append(duration) | |
vocab_set.update(list(text)) | |
return sub_result, durations, vocab_set, bad_case_en | |
def main(): | |
assert tokenizer in ["pinyin", "char"] | |
result, duration_list, text_vocab_set = [], [], set() | |
total_bad_case_en = 0 | |
executor = ProcessPoolExecutor(max_workers=max_workers) | |
futures = [] | |
dataset_path = Path(dataset_dir) | |
for sub_dir in dataset_path.iterdir(): | |
if sub_dir.is_dir(): | |
futures.append(executor.submit(process_audio_directory, sub_dir)) | |
for future in tqdm(futures, total=len(futures)): | |
sub_result, durations, vocab_set, bad_case_en = future.result() | |
result.extend(sub_result) | |
duration_list.extend(durations) | |
text_vocab_set.update(vocab_set) | |
total_bad_case_en += bad_case_en | |
executor.shutdown() | |
if not os.path.exists(f"{save_dir}"): | |
os.makedirs(f"{save_dir}") | |
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer: | |
for line in tqdm(result, desc="Writing to raw.arrow ..."): | |
writer.write(line) | |
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f: | |
json.dump({"duration": duration_list}, f, ensure_ascii=False) | |
with open(f"{save_dir}/vocab.txt", "w") as f: | |
for vocab in sorted(text_vocab_set): | |
f.write(vocab + "\n") | |
print(f"For {dataset_name}, sample count: {len(result)}") | |
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") | |
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours") | |
print(f"Bad en transcription case: {total_bad_case_en}\n") | |
if __name__ == "__main__": | |
max_workers = 32 | |
tokenizer = "char" | |
dataset_dir = "/home/ubuntu/emilia-dataset/Emilia-YODAS/EN" | |
dataset_name = f"Emilia_EN_{tokenizer}" | |
# save_dir = os.path.expanduser(f"~/F5-TTS/data/{dataset_name}") | |
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}" | |
print(f"Prepare for {dataset_name}, will save to {save_dir}\n") | |
main() | |