Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import shutil | |
from importlib.resources import files | |
from cached_path import cached_path | |
from f5_tts.model import CFM, UNetT, DiT, Trainer | |
from f5_tts.model.utils import get_tokenizer | |
from f5_tts.model.dataset import load_dataset | |
# -------------------------- Dataset Settings --------------------------- # | |
target_sample_rate = 24000 | |
n_mel_channels = 100 | |
hop_length = 256 | |
win_length = 1024 | |
n_fft = 1024 | |
mel_spec_type = "vocos" # 'vocos' or 'bigvgan' | |
# -------------------------- Argument Parsing --------------------------- # | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Train CFM Model") | |
parser.add_argument( | |
"--exp_name", | |
type=str, | |
default="F5TTS_v1_Base", | |
choices=["F5TTS_v1_Base", "F5TTS_Base", "E2TTS_Base"], | |
help="Experiment name", | |
) | |
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use") | |
parser.add_argument("--learning_rate", type=float, default=1e-5, help="Learning rate for training") | |
parser.add_argument("--batch_size_per_gpu", type=int, default=3200, help="Batch size per GPU") | |
parser.add_argument( | |
"--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type" | |
) | |
parser.add_argument("--max_samples", type=int, default=64, help="Max sequences per batch") | |
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps") | |
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping") | |
parser.add_argument("--epochs", type=int, default=100, help="Number of training epochs") | |
parser.add_argument("--num_warmup_updates", type=int, default=20000, help="Warmup updates") | |
parser.add_argument("--save_per_updates", type=int, default=50000, help="Save checkpoint every N updates") | |
parser.add_argument( | |
"--keep_last_n_checkpoints", | |
type=int, | |
default=-1, | |
help="-1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints", | |
) | |
parser.add_argument("--last_per_updates", type=int, default=5000, help="Save last checkpoint every N updates") | |
parser.add_argument("--finetune", action="store_true", help="Use Finetune") | |
parser.add_argument("--pretrain", type=str, default=None, help="the path to the checkpoint") | |
parser.add_argument( | |
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type" | |
) | |
parser.add_argument( | |
"--tokenizer_path", | |
type=str, | |
default=None, | |
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')", | |
) | |
parser.add_argument( | |
"--log_samples", | |
action="store_true", | |
help="Log inferenced samples per ckpt save updates", | |
) | |
parser.add_argument("--logger", type=str, default=None, choices=[None, "wandb", "tensorboard"], help="logger") | |
parser.add_argument( | |
"--bnb_optimizer", | |
action="store_true", | |
help="Use 8-bit Adam optimizer from bitsandbytes", | |
) | |
return parser.parse_args() | |
# -------------------------- Training Settings -------------------------- # | |
def main(): | |
args = parse_args() | |
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}")) | |
# Model parameters based on experiment name | |
if args.exp_name == "F5TTS_v1_Base": | |
wandb_resume_id = None | |
model_cls = DiT | |
model_cfg = dict( | |
dim=1024, | |
depth=22, | |
heads=16, | |
ff_mult=2, | |
text_dim=512, | |
conv_layers=4, | |
) | |
if args.finetune: | |
if args.pretrain is None: | |
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_v1_Base/model_1250000.safetensors")) | |
else: | |
ckpt_path = args.pretrain | |
elif args.exp_name == "F5TTS_Base": | |
wandb_resume_id = None | |
model_cls = DiT | |
model_cfg = dict( | |
dim=1024, | |
depth=22, | |
heads=16, | |
ff_mult=2, | |
text_dim=512, | |
text_mask_padding=False, | |
conv_layers=4, | |
pe_attn_head=1, | |
) | |
if args.finetune: | |
if args.pretrain is None: | |
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt")) | |
else: | |
ckpt_path = args.pretrain | |
elif args.exp_name == "E2TTS_Base": | |
wandb_resume_id = None | |
model_cls = UNetT | |
model_cfg = dict( | |
dim=1024, | |
depth=24, | |
heads=16, | |
ff_mult=4, | |
text_mask_padding=False, | |
pe_attn_head=1, | |
) | |
if args.finetune: | |
if args.pretrain is None: | |
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt")) | |
else: | |
ckpt_path = args.pretrain | |
if args.finetune: | |
if not os.path.isdir(checkpoint_path): | |
os.makedirs(checkpoint_path, exist_ok=True) | |
file_checkpoint = os.path.basename(ckpt_path) | |
if not file_checkpoint.startswith("pretrained_"): # Change: Add 'pretrained_' prefix to copied model | |
file_checkpoint = "pretrained_" + file_checkpoint | |
file_checkpoint = os.path.join(checkpoint_path, file_checkpoint) | |
if not os.path.isfile(file_checkpoint): | |
shutil.copy2(ckpt_path, file_checkpoint) | |
print("copy checkpoint for finetune") | |
# Use the tokenizer and tokenizer_path provided in the command line arguments | |
tokenizer = args.tokenizer | |
if tokenizer == "custom": | |
if not args.tokenizer_path: | |
raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.") | |
tokenizer_path = args.tokenizer_path | |
else: | |
tokenizer_path = args.dataset_name | |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) | |
print("\nvocab : ", vocab_size) | |
print("\nvocoder : ", mel_spec_type) | |
mel_spec_kwargs = dict( | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
n_mel_channels=n_mel_channels, | |
target_sample_rate=target_sample_rate, | |
mel_spec_type=mel_spec_type, | |
) | |
model = CFM( | |
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), | |
mel_spec_kwargs=mel_spec_kwargs, | |
vocab_char_map=vocab_char_map, | |
) | |
trainer = Trainer( | |
model, | |
args.epochs, | |
args.learning_rate, | |
num_warmup_updates=args.num_warmup_updates, | |
save_per_updates=args.save_per_updates, | |
keep_last_n_checkpoints=args.keep_last_n_checkpoints, | |
checkpoint_path=checkpoint_path, | |
batch_size_per_gpu=args.batch_size_per_gpu, | |
batch_size_type=args.batch_size_type, | |
max_samples=args.max_samples, | |
grad_accumulation_steps=args.grad_accumulation_steps, | |
max_grad_norm=args.max_grad_norm, | |
logger=args.logger, | |
wandb_project=args.dataset_name, | |
wandb_run_name=args.exp_name, | |
wandb_resume_id=wandb_resume_id, | |
log_samples=args.log_samples, | |
last_per_updates=args.last_per_updates, | |
bnb_optimizer=args.bnb_optimizer, | |
) | |
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs) | |
trainer.train( | |
train_dataset, | |
resumable_with_seed=666, # seed for shuffling dataset | |
) | |
if __name__ == "__main__": | |
main() | |