from __future__ import annotations import gc import math import os import torch import torchaudio import wandb from accelerate import Accelerator from accelerate.utils import DistributedDataParallelKwargs from ema_pytorch import EMA from torch.optim import AdamW from torch.optim.lr_scheduler import LinearLR, SequentialLR from torch.utils.data import DataLoader, Dataset, SequentialSampler from tqdm import tqdm from f5_tts.model import CFM from f5_tts.model.dataset import DynamicBatchSampler, collate_fn from f5_tts.model.utils import default, exists # trainer class Trainer: def __init__( self, model: CFM, epochs, learning_rate, num_warmup_updates=20000, save_per_updates=1000, keep_last_n_checkpoints: int = -1, # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints checkpoint_path=None, batch_size_per_gpu=32, batch_size_type: str = "sample", max_samples=32, grad_accumulation_steps=1, max_grad_norm=1.0, noise_scheduler: str | None = None, duration_predictor: torch.nn.Module | None = None, logger: str | None = "wandb", # "wandb" | "tensorboard" | None wandb_project="test_f5-tts", wandb_run_name="test_run", wandb_resume_id: str = None, log_samples: bool = False, last_per_updates=None, accelerate_kwargs: dict = dict(), ema_kwargs: dict = dict(), bnb_optimizer: bool = False, mel_spec_type: str = "vocos", # "vocos" | "bigvgan" is_local_vocoder: bool = False, # use local path vocoder local_vocoder_path: str = "", # local vocoder path model_cfg_dict: dict = dict(), # training config ): ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) if logger == "wandb" and not wandb.api.api_key: logger = None self.log_samples = log_samples self.accelerator = Accelerator( log_with=logger if logger == "wandb" else None, kwargs_handlers=[ddp_kwargs], gradient_accumulation_steps=grad_accumulation_steps, **accelerate_kwargs, ) self.logger = logger if self.logger == "wandb": if exists(wandb_resume_id): init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}} else: init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}} if not model_cfg_dict: model_cfg_dict = { "epochs": epochs, "learning_rate": learning_rate, "num_warmup_updates": num_warmup_updates, "batch_size_per_gpu": batch_size_per_gpu, "batch_size_type": batch_size_type, "max_samples": max_samples, "grad_accumulation_steps": grad_accumulation_steps, "max_grad_norm": max_grad_norm, "noise_scheduler": noise_scheduler, } model_cfg_dict["gpus"] = self.accelerator.num_processes self.accelerator.init_trackers( project_name=wandb_project, init_kwargs=init_kwargs, config=model_cfg_dict, ) elif self.logger == "tensorboard": from torch.utils.tensorboard import SummaryWriter self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}") self.model = model if self.is_main: self.ema_model = EMA(model, include_online_model=False, **ema_kwargs) self.ema_model.to(self.accelerator.device) print(f"Using logger: {logger}") if grad_accumulation_steps > 1: print( "Gradient accumulation checkpointing with per_updates now, old logic per_steps used with before f992c4e" ) self.epochs = epochs self.num_warmup_updates = num_warmup_updates self.save_per_updates = save_per_updates self.keep_last_n_checkpoints = keep_last_n_checkpoints self.last_per_updates = default(last_per_updates, save_per_updates) self.checkpoint_path = default(checkpoint_path, "ckpts/test_f5-tts") self.batch_size_per_gpu = batch_size_per_gpu self.batch_size_type = batch_size_type self.max_samples = max_samples self.grad_accumulation_steps = grad_accumulation_steps self.max_grad_norm = max_grad_norm # mel vocoder config self.vocoder_name = mel_spec_type self.is_local_vocoder = is_local_vocoder self.local_vocoder_path = local_vocoder_path self.noise_scheduler = noise_scheduler self.duration_predictor = duration_predictor if bnb_optimizer: import bitsandbytes as bnb self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate) else: self.optimizer = AdamW(model.parameters(), lr=learning_rate) self.model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer) @property def is_main(self): return self.accelerator.is_main_process def save_checkpoint(self, update, last=False): self.accelerator.wait_for_everyone() if self.is_main: checkpoint = dict( model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(), optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(), ema_model_state_dict=self.ema_model.state_dict(), scheduler_state_dict=self.scheduler.state_dict(), update=update, ) if not os.path.exists(self.checkpoint_path): os.makedirs(self.checkpoint_path) if last: self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt") print(f"Saved last checkpoint at update {update}") else: if self.keep_last_n_checkpoints == 0: return self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{update}.pt") if self.keep_last_n_checkpoints > 0: # Updated logic to exclude pretrained model from rotation checkpoints = [ f for f in os.listdir(self.checkpoint_path) if f.startswith("model_") and not f.startswith("pretrained_") # Exclude pretrained models and f.endswith(".pt") and f != "model_last.pt" ] checkpoints.sort(key=lambda x: int(x.split("_")[1].split(".")[0])) while len(checkpoints) > self.keep_last_n_checkpoints: oldest_checkpoint = checkpoints.pop(0) os.remove(os.path.join(self.checkpoint_path, oldest_checkpoint)) print(f"Removed old checkpoint: {oldest_checkpoint}") def load_checkpoint(self): if ( not exists(self.checkpoint_path) or not os.path.exists(self.checkpoint_path) or not any(filename.endswith((".pt", ".safetensors")) for filename in os.listdir(self.checkpoint_path)) ): return 0 self.accelerator.wait_for_everyone() if "model_last.pt" in os.listdir(self.checkpoint_path): latest_checkpoint = "model_last.pt" else: # Updated to consider pretrained models for loading but prioritize training checkpoints all_checkpoints = [ f for f in os.listdir(self.checkpoint_path) if (f.startswith("model_") or f.startswith("pretrained_")) and f.endswith((".pt", ".safetensors")) ] # First try to find regular training checkpoints training_checkpoints = [f for f in all_checkpoints if f.startswith("model_") and f != "model_last.pt"] if training_checkpoints: latest_checkpoint = sorted( training_checkpoints, key=lambda x: int("".join(filter(str.isdigit, x))), )[-1] else: # If no training checkpoints, use pretrained model latest_checkpoint = next(f for f in all_checkpoints if f.startswith("pretrained_")) if latest_checkpoint.endswith(".safetensors"): # always a pretrained checkpoint from safetensors.torch import load_file checkpoint = load_file(f"{self.checkpoint_path}/{latest_checkpoint}", device="cpu") checkpoint = {"ema_model_state_dict": checkpoint} elif latest_checkpoint.endswith(".pt"): # checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ checkpoint = torch.load( f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu" ) # patch for backward compatibility, 305e3ea for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]: if key in checkpoint["ema_model_state_dict"]: del checkpoint["ema_model_state_dict"][key] if self.is_main: self.ema_model.load_state_dict(checkpoint["ema_model_state_dict"]) if "update" in checkpoint or "step" in checkpoint: # patch for backward compatibility, with before f992c4e if "step" in checkpoint: checkpoint["update"] = checkpoint["step"] // self.grad_accumulation_steps if self.grad_accumulation_steps > 1 and self.is_main: print( "F5-TTS WARNING: Loading checkpoint saved with per_steps logic (before f992c4e), will convert to per_updates according to grad_accumulation_steps setting, may have unexpected behaviour." ) # patch for backward compatibility, 305e3ea for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]: if key in checkpoint["model_state_dict"]: del checkpoint["model_state_dict"][key] self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"]) self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint["optimizer_state_dict"]) if self.scheduler: self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"]) update = checkpoint["update"] else: checkpoint["model_state_dict"] = { k.replace("ema_model.", ""): v for k, v in checkpoint["ema_model_state_dict"].items() if k not in ["initted", "update", "step"] } self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"]) update = 0 del checkpoint gc.collect() return update def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None): if self.log_samples: from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef vocoder = load_vocoder( vocoder_name=self.vocoder_name, is_local=self.is_local_vocoder, local_path=self.local_vocoder_path ) target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.target_sample_rate log_samples_path = f"{self.checkpoint_path}/samples" os.makedirs(log_samples_path, exist_ok=True) if exists(resumable_with_seed): generator = torch.Generator() generator.manual_seed(resumable_with_seed) else: generator = None if self.batch_size_type == "sample": train_dataloader = DataLoader( train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True, batch_size=self.batch_size_per_gpu, shuffle=True, generator=generator, ) elif self.batch_size_type == "frame": self.accelerator.even_batches = False sampler = SequentialSampler(train_dataset) batch_sampler = DynamicBatchSampler( sampler, self.batch_size_per_gpu, max_samples=self.max_samples, random_seed=resumable_with_seed, # This enables reproducible shuffling drop_residual=False, ) train_dataloader = DataLoader( train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True, batch_sampler=batch_sampler, ) else: raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}") # accelerator.prepare() dispatches batches to devices; # which means the length of dataloader calculated before, should consider the number of devices warmup_updates = ( self.num_warmup_updates * self.accelerator.num_processes ) # consider a fixed warmup steps while using accelerate multi-gpu ddp # otherwise by default with split_batches=False, warmup steps change with num_processes total_updates = math.ceil(len(train_dataloader) / self.grad_accumulation_steps) * self.epochs decay_updates = total_updates - warmup_updates warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_updates) decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_updates) self.scheduler = SequentialLR( self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_updates] ) train_dataloader, self.scheduler = self.accelerator.prepare( train_dataloader, self.scheduler ) # actual multi_gpu updates = single_gpu updates / gpu nums start_update = self.load_checkpoint() global_update = start_update if exists(resumable_with_seed): orig_epoch_step = len(train_dataloader) start_step = start_update * self.grad_accumulation_steps skipped_epoch = int(start_step // orig_epoch_step) skipped_batch = start_step % orig_epoch_step skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch) else: skipped_epoch = 0 for epoch in range(skipped_epoch, self.epochs): self.model.train() if exists(resumable_with_seed) and epoch == skipped_epoch: progress_bar_initial = math.ceil(skipped_batch / self.grad_accumulation_steps) current_dataloader = skipped_dataloader else: progress_bar_initial = 0 current_dataloader = train_dataloader # Set epoch for the batch sampler if it exists if hasattr(train_dataloader, "batch_sampler") and hasattr(train_dataloader.batch_sampler, "set_epoch"): train_dataloader.batch_sampler.set_epoch(epoch) progress_bar = tqdm( range(math.ceil(len(train_dataloader) / self.grad_accumulation_steps)), desc=f"Epoch {epoch + 1}/{self.epochs}", unit="update", disable=not self.accelerator.is_local_main_process, initial=progress_bar_initial, ) for batch in current_dataloader: with self.accelerator.accumulate(self.model): text_inputs = batch["text"] mel_spec = batch["mel"].permute(0, 2, 1) mel_lengths = batch["mel_lengths"] # TODO. add duration predictor training if self.duration_predictor is not None and self.accelerator.is_local_main_process: dur_loss = self.duration_predictor(mel_spec, lens=batch.get("durations")) self.accelerator.log({"duration loss": dur_loss.item()}, step=global_update) loss, cond, pred = self.model( mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler ) self.accelerator.backward(loss) if self.max_grad_norm > 0 and self.accelerator.sync_gradients: self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() if self.accelerator.sync_gradients: if self.is_main: self.ema_model.update() global_update += 1 progress_bar.update(1) progress_bar.set_postfix(update=str(global_update), loss=loss.item()) if self.accelerator.is_local_main_process: self.accelerator.log( {"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_update ) if self.logger == "tensorboard": self.writer.add_scalar("loss", loss.item(), global_update) self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_update) if global_update % self.last_per_updates == 0 and self.accelerator.sync_gradients: self.save_checkpoint(global_update, last=True) if global_update % self.save_per_updates == 0 and self.accelerator.sync_gradients: self.save_checkpoint(global_update) if self.log_samples and self.accelerator.is_local_main_process: ref_audio_len = mel_lengths[0] infer_text = [ text_inputs[0] + ([" "] if isinstance(text_inputs[0], list) else " ") + text_inputs[0] ] with torch.inference_mode(): generated, _ = self.accelerator.unwrap_model(self.model).sample( cond=mel_spec[0][:ref_audio_len].unsqueeze(0), text=infer_text, duration=ref_audio_len * 2, steps=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef, ) generated = generated.to(torch.float32) gen_mel_spec = generated[:, ref_audio_len:, :].permute(0, 2, 1).to(self.accelerator.device) ref_mel_spec = batch["mel"][0].unsqueeze(0) if self.vocoder_name == "vocos": gen_audio = vocoder.decode(gen_mel_spec).cpu() ref_audio = vocoder.decode(ref_mel_spec).cpu() elif self.vocoder_name == "bigvgan": gen_audio = vocoder(gen_mel_spec).squeeze(0).cpu() ref_audio = vocoder(ref_mel_spec).squeeze(0).cpu() torchaudio.save( f"{log_samples_path}/update_{global_update}_gen.wav", gen_audio, target_sample_rate ) torchaudio.save( f"{log_samples_path}/update_{global_update}_ref.wav", ref_audio, target_sample_rate ) self.model.train() self.save_checkpoint(global_update, last=True) self.accelerator.end_training()