import argparse import json from pathlib import Path import librosa import torch from tqdm import tqdm def main(): parser = argparse.ArgumentParser(description="UTMOS Evaluation") parser.add_argument("--audio_dir", type=str, required=True, help="Audio file path.") parser.add_argument("--ext", type=str, default="wav", help="Audio extension.") args = parser.parse_args() device = "cuda" if torch.cuda.is_available() else "xpu" if torch.xpu.is_available() else "cpu" predictor = torch.hub.load("tarepan/SpeechMOS:v1.2.0", "utmos22_strong", trust_repo=True) predictor = predictor.to(device) audio_paths = list(Path(args.audio_dir).rglob(f"*.{args.ext}")) utmos_score = 0 utmos_result_path = Path(args.audio_dir) / "_utmos_results.jsonl" with open(utmos_result_path, "w", encoding="utf-8") as f: for audio_path in tqdm(audio_paths, desc="Processing"): wav, sr = librosa.load(audio_path, sr=None, mono=True) wav_tensor = torch.from_numpy(wav).to(device).unsqueeze(0) score = predictor(wav_tensor, sr) line = {} line["wav"], line["utmos"] = str(audio_path.stem), score.item() utmos_score += score.item() f.write(json.dumps(line, ensure_ascii=False) + "\n") avg_score = utmos_score / len(audio_paths) if len(audio_paths) > 0 else 0 f.write(f"\nUTMOS: {avg_score:.4f}\n") print(f"UTMOS: {avg_score:.4f}") print(f"UTMOS results saved to {utmos_result_path}") if __name__ == "__main__": main()