import socket import asyncio import pyaudio import numpy as np import logging import time logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) async def listen_to_F5TTS(text, server_ip="localhost", server_port=9998): client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) await asyncio.get_event_loop().run_in_executor(None, client_socket.connect, (server_ip, int(server_port))) start_time = time.time() first_chunk_time = None async def play_audio_stream(): nonlocal first_chunk_time p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paFloat32, channels=1, rate=24000, output=True, frames_per_buffer=2048) try: while True: data = await asyncio.get_event_loop().run_in_executor(None, client_socket.recv, 8192) if not data: break if data == b"END": logger.info("End of audio received.") break audio_array = np.frombuffer(data, dtype=np.float32) stream.write(audio_array.tobytes()) if first_chunk_time is None: first_chunk_time = time.time() finally: stream.stop_stream() stream.close() p.terminate() logger.info(f"Total time taken: {time.time() - start_time:.4f} seconds") try: data_to_send = f"{text}".encode("utf-8") await asyncio.get_event_loop().run_in_executor(None, client_socket.sendall, data_to_send) await play_audio_stream() except Exception as e: logger.error(f"Error in listen_to_F5TTS: {e}") finally: client_socket.close() if __name__ == "__main__": text_to_send = "As a Reader assistant, I'm familiar with new technology. which are key to its improved performance in terms of both training speed and inference efficiency. Let's break down the components" asyncio.run(listen_to_F5TTS(text_to_send))