Spaces:
Running
on
T4
Running
on
T4
File size: 1,215 Bytes
4300fed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
import sys
model_id = 'dbmdz/bert-base-french-europeana-cased'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = None
def get_bert_feature(text, word2ph, device=None):
global model
if (
sys.platform == "darwin"
and torch.backends.mps.is_available()
and device == "cpu"
):
device = "mps"
if not device:
device = "cuda"
if model is None:
model = AutoModelForMaskedLM.from_pretrained(model_id).to(
device
)
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
assert inputs["input_ids"].shape[-1] == len(word2ph)
word2phone = word2ph
phone_level_feature = []
for i in range(len(word2phone)):
repeat_feature = res[i].repeat(word2phone[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
|