Spaces:
Running
on
T4
Running
on
T4
import os | |
import re | |
import cn2an | |
from pypinyin import lazy_pinyin, Style | |
# from text.symbols import punctuation | |
from .symbols import language_tone_start_map | |
from .tone_sandhi import ToneSandhi | |
from .english import g2p as g2p_en | |
from transformers import AutoTokenizer | |
punctuation = ["!", "?", "…", ",", ".", "'", "-"] | |
current_file_path = os.path.dirname(__file__) | |
pinyin_to_symbol_map = { | |
line.split("\t")[0]: line.strip().split("\t")[1] | |
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines() | |
} | |
import jieba.posseg as psg | |
rep_map = { | |
":": ",", | |
";": ",", | |
",": ",", | |
"。": ".", | |
"!": "!", | |
"?": "?", | |
"\n": ".", | |
"·": ",", | |
"、": ",", | |
"...": "…", | |
"$": ".", | |
"“": "'", | |
"”": "'", | |
"‘": "'", | |
"’": "'", | |
"(": "'", | |
")": "'", | |
"(": "'", | |
")": "'", | |
"《": "'", | |
"》": "'", | |
"【": "'", | |
"】": "'", | |
"[": "'", | |
"]": "'", | |
"—": "-", | |
"~": "-", | |
"~": "-", | |
"「": "'", | |
"」": "'", | |
} | |
tone_modifier = ToneSandhi() | |
def replace_punctuation(text): | |
text = text.replace("嗯", "恩").replace("呣", "母") | |
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys())) | |
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text) | |
replaced_text = re.sub(r"[^\u4e00-\u9fa5_a-zA-Z\s" + "".join(punctuation) + r"]+", "", replaced_text) | |
replaced_text = re.sub(r"[\s]+", " ", replaced_text) | |
return replaced_text | |
def g2p(text, impl='v2'): | |
pattern = r"(?<=[{0}])\s*".format("".join(punctuation)) | |
sentences = [i for i in re.split(pattern, text) if i.strip() != ""] | |
if impl == 'v1': | |
_func = _g2p | |
elif impl == 'v2': | |
_func = _g2p_v2 | |
else: | |
raise NotImplementedError() | |
phones, tones, word2ph = _func(sentences) | |
assert sum(word2ph) == len(phones) | |
# assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch. | |
phones = ["_"] + phones + ["_"] | |
tones = [0] + tones + [0] | |
word2ph = [1] + word2ph + [1] | |
return phones, tones, word2ph | |
def _get_initials_finals(word): | |
initials = [] | |
finals = [] | |
orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS) | |
orig_finals = lazy_pinyin( | |
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3 | |
) | |
for c, v in zip(orig_initials, orig_finals): | |
initials.append(c) | |
finals.append(v) | |
return initials, finals | |
model_id = 'bert-base-multilingual-uncased' | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def _g2p(segments): | |
phones_list = [] | |
tones_list = [] | |
word2ph = [] | |
for seg in segments: | |
# Replace all English words in the sentence | |
# seg = re.sub("[a-zA-Z]+", "", seg) | |
seg_cut = psg.lcut(seg) | |
initials = [] | |
finals = [] | |
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut) | |
for word, pos in seg_cut: | |
if pos == "eng": | |
initials.append(['EN_WORD']) | |
finals.append([word]) | |
else: | |
sub_initials, sub_finals = _get_initials_finals(word) | |
sub_finals = tone_modifier.modified_tone(word, pos, sub_finals) | |
initials.append(sub_initials) | |
finals.append(sub_finals) | |
# assert len(sub_initials) == len(sub_finals) == len(word) | |
initials = sum(initials, []) | |
finals = sum(finals, []) | |
# | |
for c, v in zip(initials, finals): | |
if c == 'EN_WORD': | |
tokenized_en = tokenizer.tokenize(v) | |
phones_en, tones_en, word2ph_en = g2p_en(text=None, pad_start_end=False, tokenized=tokenized_en) | |
# apply offset to tones_en | |
tones_en = [t + language_tone_start_map['EN'] for t in tones_en] | |
phones_list += phones_en | |
tones_list += tones_en | |
word2ph += word2ph_en | |
else: | |
raw_pinyin = c + v | |
# NOTE: post process for pypinyin outputs | |
# we discriminate i, ii and iii | |
if c == v: | |
assert c in punctuation | |
phone = [c] | |
tone = "0" | |
word2ph.append(1) | |
else: | |
v_without_tone = v[:-1] | |
tone = v[-1] | |
pinyin = c + v_without_tone | |
assert tone in "12345" | |
if c: | |
# 多音节 | |
v_rep_map = { | |
"uei": "ui", | |
"iou": "iu", | |
"uen": "un", | |
} | |
if v_without_tone in v_rep_map.keys(): | |
pinyin = c + v_rep_map[v_without_tone] | |
else: | |
# 单音节 | |
pinyin_rep_map = { | |
"ing": "ying", | |
"i": "yi", | |
"in": "yin", | |
"u": "wu", | |
} | |
if pinyin in pinyin_rep_map.keys(): | |
pinyin = pinyin_rep_map[pinyin] | |
else: | |
single_rep_map = { | |
"v": "yu", | |
"e": "e", | |
"i": "y", | |
"u": "w", | |
} | |
if pinyin[0] in single_rep_map.keys(): | |
pinyin = single_rep_map[pinyin[0]] + pinyin[1:] | |
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin) | |
phone = pinyin_to_symbol_map[pinyin].split(" ") | |
word2ph.append(len(phone)) | |
phones_list += phone | |
tones_list += [int(tone)] * len(phone) | |
return phones_list, tones_list, word2ph | |
def text_normalize(text): | |
numbers = re.findall(r"\d+(?:\.?\d+)?", text) | |
for number in numbers: | |
text = text.replace(number, cn2an.an2cn(number), 1) | |
text = replace_punctuation(text) | |
return text | |
def get_bert_feature(text, word2ph, device): | |
from . import chinese_bert | |
return chinese_bert.get_bert_feature(text, word2ph, model_id='bert-base-multilingual-uncased', device=device) | |
from .chinese import _g2p as _chinese_g2p | |
def _g2p_v2(segments): | |
spliter = '#$&^!@' | |
phones_list = [] | |
tones_list = [] | |
word2ph = [] | |
for text in segments: | |
assert spliter not in text | |
# replace all english words | |
text = re.sub('([a-zA-Z\s]+)', lambda x: f'{spliter}{x.group(1)}{spliter}', text) | |
texts = text.split(spliter) | |
texts = [t for t in texts if len(t) > 0] | |
for text in texts: | |
if re.match('[a-zA-Z\s]+', text): | |
# english | |
tokenized_en = tokenizer.tokenize(text) | |
phones_en, tones_en, word2ph_en = g2p_en(text=None, pad_start_end=False, tokenized=tokenized_en) | |
# apply offset to tones_en | |
tones_en = [t + language_tone_start_map['EN'] for t in tones_en] | |
phones_list += phones_en | |
tones_list += tones_en | |
word2ph += word2ph_en | |
else: | |
phones_zh, tones_zh, word2ph_zh = _chinese_g2p([text]) | |
phones_list += phones_zh | |
tones_list += tones_zh | |
word2ph += word2ph_zh | |
return phones_list, tones_list, word2ph | |
if __name__ == "__main__": | |
# from text.chinese_bert import get_bert_feature | |
text = "NFT啊!chemistry 但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏" | |
text = '我最近在学习machine learning,希望能够在未来的artificial intelligence领域有所建树。' | |
text = '今天下午,我们准备去shopping mall购物,然后晚上去看一场movie。' | |
text = '我们现在 also 能够 help 很多公司 use some machine learning 的 algorithms 啊!' | |
text = text_normalize(text) | |
print(text) | |
phones, tones, word2ph = g2p(text, impl='v2') | |
bert = get_bert_feature(text, word2ph, device='cuda:0') | |
print(phones) | |
import pdb; pdb.set_trace() | |
# # 示例用法 | |
# text = "这是一个示例文本:,你好!这是一个测试...." | |
# print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试 | |