Spaces:
Running
on
T4
Running
on
T4
import torch | |
from transformers import AutoTokenizer, AutoModelForMaskedLM | |
import sys | |
model_id = 'bert-base-uncased' | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = None | |
def get_bert_feature(text, word2ph, device=None): | |
global model | |
if ( | |
sys.platform == "darwin" | |
and torch.backends.mps.is_available() | |
and device == "cpu" | |
): | |
device = "mps" | |
if not device: | |
device = "cuda" | |
if model is None: | |
model = AutoModelForMaskedLM.from_pretrained(model_id).to( | |
device | |
) | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) | |
res = model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu() | |
assert inputs["input_ids"].shape[-1] == len(word2ph) | |
word2phone = word2ph | |
phone_level_feature = [] | |
for i in range(len(word2phone)): | |
repeat_feature = res[i].repeat(word2phone[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |