Spaces:
Running
on
T4
Running
on
T4
import pickle | |
import os | |
import re | |
from g2p_en import G2p | |
from . import symbols | |
from .english_utils.abbreviations import expand_abbreviations | |
from .english_utils.time_norm import expand_time_english | |
from .english_utils.number_norm import normalize_numbers | |
from .japanese import distribute_phone | |
from transformers import AutoTokenizer | |
current_file_path = os.path.dirname(__file__) | |
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep") | |
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle") | |
_g2p = G2p() | |
arpa = { | |
"AH0", | |
"S", | |
"AH1", | |
"EY2", | |
"AE2", | |
"EH0", | |
"OW2", | |
"UH0", | |
"NG", | |
"B", | |
"G", | |
"AY0", | |
"M", | |
"AA0", | |
"F", | |
"AO0", | |
"ER2", | |
"UH1", | |
"IY1", | |
"AH2", | |
"DH", | |
"IY0", | |
"EY1", | |
"IH0", | |
"K", | |
"N", | |
"W", | |
"IY2", | |
"T", | |
"AA1", | |
"ER1", | |
"EH2", | |
"OY0", | |
"UH2", | |
"UW1", | |
"Z", | |
"AW2", | |
"AW1", | |
"V", | |
"UW2", | |
"AA2", | |
"ER", | |
"AW0", | |
"UW0", | |
"R", | |
"OW1", | |
"EH1", | |
"ZH", | |
"AE0", | |
"IH2", | |
"IH", | |
"Y", | |
"JH", | |
"P", | |
"AY1", | |
"EY0", | |
"OY2", | |
"TH", | |
"HH", | |
"D", | |
"ER0", | |
"CH", | |
"AO1", | |
"AE1", | |
"AO2", | |
"OY1", | |
"AY2", | |
"IH1", | |
"OW0", | |
"L", | |
"SH", | |
} | |
def post_replace_ph(ph): | |
rep_map = { | |
":": ",", | |
";": ",", | |
",": ",", | |
"。": ".", | |
"!": "!", | |
"?": "?", | |
"\n": ".", | |
"·": ",", | |
"、": ",", | |
"...": "…", | |
"v": "V", | |
} | |
if ph in rep_map.keys(): | |
ph = rep_map[ph] | |
if ph in symbols: | |
return ph | |
if ph not in symbols: | |
ph = "UNK" | |
return ph | |
def read_dict(): | |
g2p_dict = {} | |
start_line = 49 | |
with open(CMU_DICT_PATH) as f: | |
line = f.readline() | |
line_index = 1 | |
while line: | |
if line_index >= start_line: | |
line = line.strip() | |
word_split = line.split(" ") | |
word = word_split[0] | |
syllable_split = word_split[1].split(" - ") | |
g2p_dict[word] = [] | |
for syllable in syllable_split: | |
phone_split = syllable.split(" ") | |
g2p_dict[word].append(phone_split) | |
line_index = line_index + 1 | |
line = f.readline() | |
return g2p_dict | |
def cache_dict(g2p_dict, file_path): | |
with open(file_path, "wb") as pickle_file: | |
pickle.dump(g2p_dict, pickle_file) | |
def get_dict(): | |
if os.path.exists(CACHE_PATH): | |
with open(CACHE_PATH, "rb") as pickle_file: | |
g2p_dict = pickle.load(pickle_file) | |
else: | |
g2p_dict = read_dict() | |
cache_dict(g2p_dict, CACHE_PATH) | |
return g2p_dict | |
eng_dict = get_dict() | |
def refine_ph(phn): | |
tone = 0 | |
if re.search(r"\d$", phn): | |
tone = int(phn[-1]) + 1 | |
phn = phn[:-1] | |
return phn.lower(), tone | |
def refine_syllables(syllables): | |
tones = [] | |
phonemes = [] | |
for phn_list in syllables: | |
for i in range(len(phn_list)): | |
phn = phn_list[i] | |
phn, tone = refine_ph(phn) | |
phonemes.append(phn) | |
tones.append(tone) | |
return phonemes, tones | |
def text_normalize(text): | |
text = text.lower() | |
text = expand_time_english(text) | |
text = normalize_numbers(text) | |
text = expand_abbreviations(text) | |
return text | |
model_id = 'bert-base-uncased' | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def g2p_old(text): | |
tokenized = tokenizer.tokenize(text) | |
# import pdb; pdb.set_trace() | |
phones = [] | |
tones = [] | |
words = re.split(r"([,;.\-\?\!\s+])", text) | |
for w in words: | |
if w.upper() in eng_dict: | |
phns, tns = refine_syllables(eng_dict[w.upper()]) | |
phones += phns | |
tones += tns | |
else: | |
phone_list = list(filter(lambda p: p != " ", _g2p(w))) | |
for ph in phone_list: | |
if ph in arpa: | |
ph, tn = refine_ph(ph) | |
phones.append(ph) | |
tones.append(tn) | |
else: | |
phones.append(ph) | |
tones.append(0) | |
# todo: implement word2ph | |
word2ph = [1 for i in phones] | |
phones = [post_replace_ph(i) for i in phones] | |
return phones, tones, word2ph | |
def g2p(text, pad_start_end=True, tokenized=None): | |
if tokenized is None: | |
tokenized = tokenizer.tokenize(text) | |
# import pdb; pdb.set_trace() | |
phs = [] | |
ph_groups = [] | |
for t in tokenized: | |
if not t.startswith("#"): | |
ph_groups.append([t]) | |
else: | |
ph_groups[-1].append(t.replace("#", "")) | |
phones = [] | |
tones = [] | |
word2ph = [] | |
for group in ph_groups: | |
w = "".join(group) | |
phone_len = 0 | |
word_len = len(group) | |
if w.upper() in eng_dict: | |
phns, tns = refine_syllables(eng_dict[w.upper()]) | |
phones += phns | |
tones += tns | |
phone_len += len(phns) | |
else: | |
phone_list = list(filter(lambda p: p != " ", _g2p(w))) | |
for ph in phone_list: | |
if ph in arpa: | |
ph, tn = refine_ph(ph) | |
phones.append(ph) | |
tones.append(tn) | |
else: | |
phones.append(ph) | |
tones.append(0) | |
phone_len += 1 | |
aaa = distribute_phone(phone_len, word_len) | |
word2ph += aaa | |
phones = [post_replace_ph(i) for i in phones] | |
if pad_start_end: | |
phones = ["_"] + phones + ["_"] | |
tones = [0] + tones + [0] | |
word2ph = [1] + word2ph + [1] | |
return phones, tones, word2ph | |
def get_bert_feature(text, word2ph, device=None): | |
from text import english_bert | |
return english_bert.get_bert_feature(text, word2ph, device=device) | |
if __name__ == "__main__": | |
# print(get_dict()) | |
# print(eng_word_to_phoneme("hello")) | |
from text.english_bert import get_bert_feature | |
text = "In this paper, we propose 1 DSPGAN, a N-F-T GAN-based universal vocoder." | |
text = text_normalize(text) | |
phones, tones, word2ph = g2p(text) | |
import pdb; pdb.set_trace() | |
bert = get_bert_feature(text, word2ph) | |
print(phones, tones, word2ph, bert.shape) | |
# all_phones = set() | |
# for k, syllables in eng_dict.items(): | |
# for group in syllables: | |
# for ph in group: | |
# all_phones.add(ph) | |
# print(all_phones) | |