File size: 4,947 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import json
import numpy as np
import torch
import hydra
import logging
from omegaconf import DictConfig, OmegaConf

from funasr_detach.register import tables
from funasr_detach.download.download_from_hub import download_model
from funasr_detach.train_utils.set_all_random_seed import set_all_random_seed


@hydra.main(config_name=None, version_base=None)
def main_hydra(kwargs: DictConfig):
    if kwargs.get("debug", False):
        import pdb

        pdb.set_trace()

    assert "model" in kwargs
    if "model_conf" not in kwargs:
        logging.info(
            "download models from model hub: {}".format(kwargs.get("model_hub", "ms"))
        )
        kwargs = download_model(is_training=kwargs.get("is_training", True), **kwargs)

    main(**kwargs)


def main(**kwargs):
    print(kwargs)
    # set random seed
    tables.print()
    set_all_random_seed(kwargs.get("seed", 0))
    torch.backends.cudnn.enabled = kwargs.get(
        "cudnn_enabled", torch.backends.cudnn.enabled
    )
    torch.backends.cudnn.benchmark = kwargs.get(
        "cudnn_benchmark", torch.backends.cudnn.benchmark
    )
    torch.backends.cudnn.deterministic = kwargs.get("cudnn_deterministic", True)

    tokenizer = kwargs.get("tokenizer", None)

    # build frontend if frontend is none None
    frontend = kwargs.get("frontend", None)
    if frontend is not None:
        frontend_class = tables.frontend_classes.get(frontend)
        frontend = frontend_class(**kwargs["frontend_conf"])
        kwargs["frontend"] = frontend
        kwargs["input_size"] = frontend.output_size()

    # dataset
    dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset"))
    dataset_train = dataset_class(
        kwargs.get("train_data_set_list"),
        frontend=frontend,
        tokenizer=None,
        is_training=False,
        **kwargs.get("dataset_conf")
    )

    # dataloader
    batch_sampler = kwargs["dataset_conf"].get(
        "batch_sampler", "DynamicBatchLocalShuffleSampler"
    )
    batch_sampler_train = None
    if batch_sampler is not None:
        batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler)
        dataset_conf = kwargs.get("dataset_conf")
        dataset_conf["batch_type"] = "example"
        dataset_conf["batch_size"] = 1
        batch_sampler_train = batch_sampler_class(
            dataset_train, is_training=False, **dataset_conf
        )

    dataloader_train = torch.utils.data.DataLoader(
        dataset_train,
        collate_fn=dataset_train.collator,
        batch_sampler=batch_sampler_train,
        num_workers=int(kwargs.get("dataset_conf").get("num_workers", 4)),
        pin_memory=True,
    )

    iter_stop = int(kwargs.get("scale", 1.0) * len(dataloader_train))

    total_frames = 0
    for batch_idx, batch in enumerate(dataloader_train):
        if batch_idx >= iter_stop:
            break

        fbank = batch["speech"].numpy()[0, :, :]
        if total_frames == 0:
            mean_stats = np.sum(fbank, axis=0)
            var_stats = np.sum(np.square(fbank), axis=0)
        else:
            mean_stats += np.sum(fbank, axis=0)
            var_stats += np.sum(np.square(fbank), axis=0)
        total_frames += fbank.shape[0]

    cmvn_info = {
        "mean_stats": list(mean_stats.tolist()),
        "var_stats": list(var_stats.tolist()),
        "total_frames": total_frames,
    }
    cmvn_file = kwargs.get("cmvn_file", "cmvn.json")
    # import pdb;pdb.set_trace()
    with open(cmvn_file, "w") as fout:
        fout.write(json.dumps(cmvn_info))

    mean = -1.0 * mean_stats / total_frames
    var = 1.0 / np.sqrt(var_stats / total_frames - mean * mean)
    dims = mean.shape[0]
    am_mvn = os.path.dirname(cmvn_file) + "/am.mvn"
    with open(am_mvn, "w") as fout:
        fout.write(
            "<Nnet>"
            + "\n"
            + "<Splice> "
            + str(dims)
            + " "
            + str(dims)
            + "\n"
            + "[ 0 ]"
            + "\n"
            + "<AddShift> "
            + str(dims)
            + " "
            + str(dims)
            + "\n"
        )
        mean_str = (
            str(list(mean)).replace(",", "").replace("[", "[ ").replace("]", " ]")
        )
        fout.write("<LearnRateCoef> 0 " + mean_str + "\n")
        fout.write("<Rescale> " + str(dims) + " " + str(dims) + "\n")
        var_str = str(list(var)).replace(",", "").replace("[", "[ ").replace("]", " ]")
        fout.write("<LearnRateCoef> 0 " + var_str + "\n")
        fout.write("</Nnet>" + "\n")


"""
python funasr/bin/compute_audio_cmvn.py \
--config-path "/Users/zhifu/funasr1.0/examples/aishell/paraformer/conf" \
--config-name "train_asr_paraformer_conformer_12e_6d_2048_256.yaml" \
++train_data_set_list="/Users/zhifu/funasr1.0/data/list/audio_datasets.jsonl" \
++cmvn_file="/Users/zhifu/funasr1.0/data/list/cmvn.json" \
++dataset_conf.num_workers=0
"""
if __name__ == "__main__":
    main_hydra()