File size: 7,893 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-

import os
import sys
import torch
import hydra
import logging
import argparse
from io import BytesIO
import torch.distributed as dist
from collections.abc import Sequence
from omegaconf import DictConfig, OmegaConf
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

from funasr_detach.register import tables
from funasr_detach.optimizers import optim_classes
from funasr_detach.train_utils.trainer import Trainer
from funasr_detach.schedulers import scheduler_classes
from funasr_detach.train_utils.initialize import initialize
from funasr_detach.download.download_from_hub import download_model
from funasr_detach.models.lora.utils import mark_only_lora_as_trainable
from funasr_detach.train_utils.set_all_random_seed import set_all_random_seed
from funasr_detach.train_utils.load_pretrained_model import load_pretrained_model

# from funasr_detach.tokenizer.build_tokenizer import build_tokenizer
# from funasr_detach.tokenizer.token_id_converter import TokenIDConverter
# from funasr_detach.tokenizer.funtoken import build_tokenizer


@hydra.main(config_name=None, version_base=None)
def main_hydra(kwargs: DictConfig):
    if kwargs.get("debug", False):
        import pdb

        pdb.set_trace()

    assert "model" in kwargs
    if "model_conf" not in kwargs:
        logging.info(
            "download models from model hub: {}".format(kwargs.get("model_hub", "ms"))
        )
        kwargs = download_model(is_training=kwargs.get("is_training", True), **kwargs)

    main(**kwargs)


def main(**kwargs):
    print(kwargs)

    # set random seed
    set_all_random_seed(kwargs.get("seed", 0))
    torch.backends.cudnn.enabled = kwargs.get(
        "cudnn_enabled", torch.backends.cudnn.enabled
    )
    torch.backends.cudnn.benchmark = kwargs.get(
        "cudnn_benchmark", torch.backends.cudnn.benchmark
    )
    torch.backends.cudnn.deterministic = kwargs.get("cudnn_deterministic", True)

    local_rank = int(os.environ.get("LOCAL_RANK", 0))
    if local_rank == 0:
        tables.print()
    # Check if we are using DDP or FSDP
    use_ddp = "WORLD_SIZE" in os.environ and int(os.environ["WORLD_SIZE"]) > 1
    use_fsdp = kwargs.get("use_fsdp", None)
    if use_ddp or use_fsdp:
        dist.init_process_group(
            backend=kwargs.get("backend", "nccl"), init_method="env://"
        )
        torch.cuda.set_device(local_rank)

    # save config.yaml
    if (
        (use_ddp or use_fsdp)
        and dist.get_rank() == 0
        or not (use_ddp or use_fsdp)
        and local_rank == 0
    ):
        os.makedirs(kwargs.get("output_dir", "./"), exist_ok=True)
        yaml_file = os.path.join(kwargs.get("output_dir", "./"), "config.yaml")
        OmegaConf.save(config=kwargs, f=yaml_file)
        logging.info("config.yaml is saved to: %s", yaml_file)

    tokenizer = kwargs.get("tokenizer", None)
    if tokenizer is not None:
        tokenizer_class = tables.tokenizer_classes.get(tokenizer)
        tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
        kwargs["tokenizer"] = tokenizer

    # build frontend if frontend is none None
    frontend = kwargs.get("frontend", None)
    if frontend is not None:
        frontend_class = tables.frontend_classes.get(frontend)
        frontend = frontend_class(**kwargs["frontend_conf"])
        kwargs["frontend"] = frontend
        kwargs["input_size"] = frontend.output_size()

    # build model
    model_class = tables.model_classes.get(kwargs["model"])
    model = model_class(
        **kwargs, **kwargs["model_conf"], vocab_size=len(tokenizer.token_list)
    )

    # init_param
    init_param = kwargs.get("init_param", None)
    if init_param is not None:
        if not isinstance(init_param, (list, tuple)):
            init_param = (init_param,)
        logging.info("init_param is not None: %s", init_param)
        for p in init_param:
            logging.info(f"Loading pretrained params from {p}")
            load_pretrained_model(
                model=model,
                path=p,
                ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True),
                oss_bucket=kwargs.get("oss_bucket", None),
                scope_map=kwargs.get("scope_map", None),
                excludes=kwargs.get("excludes", None),
            )
    else:
        initialize(model, kwargs.get("init", "kaiming_normal"))

    # freeze_param
    freeze_param = kwargs.get("freeze_param", None)
    if freeze_param is not None:
        freeze_param = eval(freeze_param)
        if isinstance(freeze_param, Sequence):
            freeze_param = (freeze_param,)
        logging.info("freeze_param is not None: %s", freeze_param)
        for t in freeze_param:
            for k, p in model.named_parameters():
                if k.startswith(t + ".") or k == t:
                    logging.info(f"Setting {k}.requires_grad = False")
                    p.requires_grad = False

    if use_ddp:
        model = model.cuda(local_rank)
        model = DDP(
            model,
            device_ids=[local_rank],
            find_unused_parameters=kwargs.get("train_conf", {}).get(
                "find_unused_parameters", False
            ),
        )
    elif use_fsdp:
        model = FSDP(model).cuda(local_rank)
    else:
        model = model.to(device=kwargs.get("device", "cuda"))

    # optim
    optim = kwargs.get("optim", "adam")
    assert optim in optim_classes
    optim_class = optim_classes.get(optim)
    optim = optim_class(model.parameters(), **kwargs.get("optim_conf"))

    # scheduler
    scheduler = kwargs.get("scheduler", "warmuplr")
    assert scheduler in scheduler_classes
    scheduler_class = scheduler_classes.get(scheduler)
    scheduler = scheduler_class(optim, **kwargs.get("scheduler_conf"))

    # dataset
    dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset"))
    dataset_tr = dataset_class(
        kwargs.get("train_data_set_list"),
        frontend=frontend,
        tokenizer=tokenizer,
        is_training=True,
        **kwargs.get("dataset_conf"),
    )
    dataset_val = dataset_class(
        kwargs.get("valid_data_set_list"),
        frontend=frontend,
        tokenizer=tokenizer,
        is_training=False,
        **kwargs.get("dataset_conf"),
    )

    # dataloader
    batch_sampler = kwargs["dataset_conf"].get(
        "batch_sampler", "DynamicBatchLocalShuffleSampler"
    )
    batch_sampler_val = None
    if batch_sampler is not None:
        batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler)
        batch_sampler = batch_sampler_class(dataset_tr, **kwargs.get("dataset_conf"))
        batch_sampler_val = batch_sampler_class(
            dataset_val, is_training=False, **kwargs.get("dataset_conf")
        )
    dataloader_tr = torch.utils.data.DataLoader(
        dataset_tr,
        collate_fn=dataset_tr.collator,
        batch_sampler=batch_sampler,
        num_workers=kwargs.get("dataset_conf").get("num_workers", 4),
        pin_memory=True,
    )

    dataloader_val = torch.utils.data.DataLoader(
        dataset_val,
        collate_fn=dataset_val.collator,
        batch_sampler=batch_sampler_val,
        num_workers=kwargs.get("dataset_conf").get("num_workers", 4),
        pin_memory=True,
    )
    trainer = Trainer(
        model=model,
        optim=optim,
        scheduler=scheduler,
        dataloader_train=dataloader_tr,
        dataloader_val=dataloader_val,
        local_rank=local_rank,
        use_ddp=use_ddp,
        use_fsdp=use_fsdp,
        output_dir=kwargs.get("output_dir", "./exp"),
        resume=kwargs.get("resume", True),
        **kwargs.get("train_conf"),
    )
    trainer.run()

    if use_ddp or use_fsdp:
        torch.distributed.destroy_process_group()


if __name__ == "__main__":
    main_hydra()