File size: 7,975 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import copy
import numpy as np
import time
import torch
from funasr_detach.models.eend.utils.power import create_powerlabel
from itertools import combinations

metrics = [
    ("diarization_error", "speaker_scored", "DER"),
    ("speech_miss", "speech_scored", "SAD_MR"),
    ("speech_falarm", "speech_scored", "SAD_FR"),
    ("speaker_miss", "speaker_scored", "MI"),
    ("speaker_falarm", "speaker_scored", "FA"),
    ("speaker_error", "speaker_scored", "CF"),
    ("correct", "frames", "accuracy"),
]


def recover_prediction(y, n_speaker):
    if n_speaker <= 1:
        return y
    elif n_speaker == 2:
        com_index = torch.from_numpy(
            np.array(list(combinations(np.arange(n_speaker), 2)))
        ).to(y.dtype)
        num_coms = com_index.shape[0]
        y_single = y[:, :-num_coms]
        y_olp = y[:, -num_coms:]
        olp_map_index = torch.where(y_olp > 0.5)
        olp_map_index = torch.stack(olp_map_index, dim=1)
        com_map_index = com_index[olp_map_index[:, -1]]
        speaker_map_index = (
            torch.from_numpy(np.array(com_map_index)).view(-1).to(torch.int64)
        )
        frame_map_index = (
            olp_map_index[:, 0][:, None].repeat([1, 2]).view(-1).to(torch.int64)
        )
        y_single[frame_map_index] = 0
        y_single[frame_map_index, speaker_map_index] = 1
        return y_single
    else:
        olp2_com_index = torch.from_numpy(
            np.array(list(combinations(np.arange(n_speaker), 2)))
        ).to(y.dtype)
        olp2_num_coms = olp2_com_index.shape[0]
        olp3_com_index = torch.from_numpy(
            np.array(list(combinations(np.arange(n_speaker), 3)))
        ).to(y.dtype)
        olp3_num_coms = olp3_com_index.shape[0]
        y_single = y[:, :n_speaker]
        y_olp2 = y[:, n_speaker : n_speaker + olp2_num_coms]
        y_olp3 = y[:, -olp3_num_coms:]

        olp3_map_index = torch.where(y_olp3 > 0.5)
        olp3_map_index = torch.stack(olp3_map_index, dim=1)
        olp3_com_map_index = olp3_com_index[olp3_map_index[:, -1]]
        olp3_speaker_map_index = (
            torch.from_numpy(np.array(olp3_com_map_index)).view(-1).to(torch.int64)
        )
        olp3_frame_map_index = (
            olp3_map_index[:, 0][:, None].repeat([1, 3]).view(-1).to(torch.int64)
        )
        y_single[olp3_frame_map_index] = 0
        y_single[olp3_frame_map_index, olp3_speaker_map_index] = 1
        y_olp2[olp3_frame_map_index] = 0

        olp2_map_index = torch.where(y_olp2 > 0.5)
        olp2_map_index = torch.stack(olp2_map_index, dim=1)
        olp2_com_map_index = olp2_com_index[olp2_map_index[:, -1]]
        olp2_speaker_map_index = (
            torch.from_numpy(np.array(olp2_com_map_index)).view(-1).to(torch.int64)
        )
        olp2_frame_map_index = (
            olp2_map_index[:, 0][:, None].repeat([1, 2]).view(-1).to(torch.int64)
        )
        y_single[olp2_frame_map_index] = 0
        y_single[olp2_frame_map_index, olp2_speaker_map_index] = 1
        return y_single


class PowerReporter:
    def __init__(self, valid_data_loader, mapping_dict, max_n_speaker):
        valid_data_loader_cp = copy.deepcopy(valid_data_loader)
        self.valid_data_loader = valid_data_loader_cp
        del valid_data_loader
        self.mapping_dict = mapping_dict
        self.max_n_speaker = max_n_speaker

    def report(self, model, eidx, device):
        self.report_val(model, eidx, device)

    def report_val(self, model, eidx, device):
        model.eval()
        ud_valid_start = time.time()
        valid_res, valid_loss, stats_keys, vad_valid_accuracy = self.report_core(
            model, self.valid_data_loader, device
        )

        # Epoch Display
        valid_der = valid_res["diarization_error"] / valid_res["speaker_scored"]
        valid_accuracy = (
            valid_res["correct"].to(torch.float32) / valid_res["frames"] * 100
        )
        vad_valid_accuracy = vad_valid_accuracy * 100
        print(
            "Epoch ",
            eidx + 1,
            "Valid Loss ",
            valid_loss,
            "Valid_DER %.5f" % valid_der,
            "Valid_Accuracy %.5f%% " % valid_accuracy,
            "VAD_Valid_Accuracy %.5f%% " % vad_valid_accuracy,
        )
        ud_valid = (time.time() - ud_valid_start) / 60.0
        print("Valid cost time ... ", ud_valid)

    def inv_mapping_func(self, label, mapping_dict):
        if not isinstance(label, int):
            label = int(label)
        if label in mapping_dict["label2dec"].keys():
            num = mapping_dict["label2dec"][label]
        else:
            num = -1
        return num

    def report_core(self, model, data_loader, device):
        res = {}
        for item in metrics:
            res[item[0]] = 0.0
            res[item[1]] = 0.0
        with torch.no_grad():
            loss_s = 0.0
            uidx = 0
            for xs, ts, orders in data_loader:
                xs = [x.to(device) for x in xs]
                ts = [t.to(device) for t in ts]
                orders = [o.to(device) for o in orders]
                loss, pit_loss, mpit_loss, att_loss, ys, logits, labels, attractors = (
                    model(xs, ts, orders)
                )
                loss_s += loss.item()
                uidx += 1

                for logit, t, att in zip(logits, labels, attractors):
                    pred = torch.argmax(torch.softmax(logit, dim=-1), dim=-1)  # (T, )
                    oov_index = torch.where(pred == self.mapping_dict["oov"])[0]
                    for i in oov_index:
                        if i > 0:
                            pred[i] = pred[i - 1]
                        else:
                            pred[i] = 0
                    pred = [self.inv_mapping_func(i, self.mapping_dict) for i in pred]
                    decisions = [
                        bin(num)[2:].zfill(self.max_n_speaker)[::-1] for num in pred
                    ]
                    decisions = (
                        torch.from_numpy(
                            np.stack(
                                [np.array([int(i) for i in dec]) for dec in decisions],
                                axis=0,
                            )
                        )
                        .to(att.device)
                        .to(torch.float32)
                    )
                    decisions = decisions[:, : att.shape[0]]

                    stats = self.calc_diarization_error(decisions, t)
                    res["speaker_scored"] += stats["speaker_scored"]
                    res["speech_scored"] += stats["speech_scored"]
                    res["frames"] += stats["frames"]
                    for item in metrics:
                        res[item[0]] += stats[item[0]]
                loss_s /= uidx
                vad_acc = 0

        return res, loss_s, stats.keys(), vad_acc

    def calc_diarization_error(self, decisions, label, label_delay=0):
        label = label[: len(label) - label_delay, ...]
        n_ref = torch.sum(label, dim=-1)
        n_sys = torch.sum(decisions, dim=-1)
        res = {}
        res["speech_scored"] = torch.sum(n_ref > 0)
        res["speech_miss"] = torch.sum((n_ref > 0) & (n_sys == 0))
        res["speech_falarm"] = torch.sum((n_ref == 0) & (n_sys > 0))
        res["speaker_scored"] = torch.sum(n_ref)
        res["speaker_miss"] = torch.sum(
            torch.max(n_ref - n_sys, torch.zeros_like(n_ref))
        )
        res["speaker_falarm"] = torch.sum(
            torch.max(n_sys - n_ref, torch.zeros_like(n_ref))
        )
        n_map = torch.sum(((label == 1) & (decisions == 1)), dim=-1).to(torch.float32)
        res["speaker_error"] = torch.sum(torch.min(n_ref, n_sys) - n_map)
        res["correct"] = torch.sum(label == decisions) / label.shape[1]
        res["diarization_error"] = (
            res["speaker_miss"] + res["speaker_falarm"] + res["speaker_error"]
        )
        res["frames"] = len(label)
        return res