File size: 17,797 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
from typing import Optional
from typing import Tuple

import logging
import torch
from torch import nn


from funasr_detach.models.encoder.encoder_layer_mfcca import EncoderLayer
from funasr_detach.models.transformer.utils.nets_utils import get_activation
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.attention import (
    MultiHeadedAttention,  # noqa: H301
    RelPositionMultiHeadedAttention,  # noqa: H301
    LegacyRelPositionMultiHeadedAttention,  # noqa: H301
)
from funasr_detach.models.transformer.embedding import (
    PositionalEncoding,  # noqa: H301
    ScaledPositionalEncoding,  # noqa: H301
    RelPositionalEncoding,  # noqa: H301
    LegacyRelPositionalEncoding,  # noqa: H301
)
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
from funasr_detach.models.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,  # noqa: H301
)
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError
from funasr_detach.models.transformer.utils.subsampling import check_short_utt
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
import pdb
import math


class ConvolutionModule(nn.Module):
    """ConvolutionModule in Conformer model.
    Args:
        channels (int): The number of channels of conv layers.
        kernel_size (int): Kernerl size of conv layers.
    """

    def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
        """Construct an ConvolutionModule object."""
        super(ConvolutionModule, self).__init__()
        # kernerl_size should be a odd number for 'SAME' padding
        assert (kernel_size - 1) % 2 == 0

        self.pointwise_conv1 = nn.Conv1d(
            channels,
            2 * channels,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=bias,
        )
        self.depthwise_conv = nn.Conv1d(
            channels,
            channels,
            kernel_size,
            stride=1,
            padding=(kernel_size - 1) // 2,
            groups=channels,
            bias=bias,
        )
        self.norm = nn.BatchNorm1d(channels)
        self.pointwise_conv2 = nn.Conv1d(
            channels,
            channels,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=bias,
        )
        self.activation = activation

    def forward(self, x):
        """Compute convolution module.
        Args:
            x (torch.Tensor): Input tensor (#batch, time, channels).
        Returns:
            torch.Tensor: Output tensor (#batch, time, channels).
        """
        # exchange the temporal dimension and the feature dimension
        x = x.transpose(1, 2)

        # GLU mechanism
        x = self.pointwise_conv1(x)  # (batch, 2*channel, dim)
        x = nn.functional.glu(x, dim=1)  # (batch, channel, dim)

        # 1D Depthwise Conv
        x = self.depthwise_conv(x)
        x = self.activation(self.norm(x))

        x = self.pointwise_conv2(x)

        return x.transpose(1, 2)


class MFCCAEncoder(AbsEncoder):
    """Conformer encoder module.
    Args:
        input_size (int): Input dimension.
        output_size (int): Dimention of attention.
        attention_heads (int): The number of heads of multi head attention.
        linear_units (int): The number of units of position-wise feed forward.
        num_blocks (int): The number of decoder blocks.
        dropout_rate (float): Dropout rate.
        attention_dropout_rate (float): Dropout rate in attention.
        positional_dropout_rate (float): Dropout rate after adding positional encoding.
        input_layer (Union[str, torch.nn.Module]): Input layer type.
        normalize_before (bool): Whether to use layer_norm before the first block.
        concat_after (bool): Whether to concat attention layer's input and output.
            If True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            If False, no additional linear will be applied. i.e. x -> x + att(x)
        positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear".
        positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer.
        rel_pos_type (str): Whether to use the latest relative positional encoding or
            the legacy one. The legacy relative positional encoding will be deprecated
            in the future. More Details can be found in
            https://github.com/espnet/espnet/pull/2816.
        encoder_pos_enc_layer_type (str): Encoder positional encoding layer type.
        encoder_attn_layer_type (str): Encoder attention layer type.
        activation_type (str): Encoder activation function type.
        macaron_style (bool): Whether to use macaron style for positionwise layer.
        use_cnn_module (bool): Whether to use convolution module.
        zero_triu (bool): Whether to zero the upper triangular part of attention matrix.
        cnn_module_kernel (int): Kernerl size of convolution module.
        padding_idx (int): Padding idx for input_layer=embed.
    """

    def __init__(
        self,
        input_size: int,
        output_size: int = 256,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        attention_dropout_rate: float = 0.0,
        input_layer: str = "conv2d",
        normalize_before: bool = True,
        concat_after: bool = False,
        positionwise_layer_type: str = "linear",
        positionwise_conv_kernel_size: int = 3,
        macaron_style: bool = False,
        rel_pos_type: str = "legacy",
        pos_enc_layer_type: str = "rel_pos",
        selfattention_layer_type: str = "rel_selfattn",
        activation_type: str = "swish",
        use_cnn_module: bool = True,
        zero_triu: bool = False,
        cnn_module_kernel: int = 31,
        padding_idx: int = -1,
    ):
        super().__init__()
        self._output_size = output_size

        if rel_pos_type == "legacy":
            if pos_enc_layer_type == "rel_pos":
                pos_enc_layer_type = "legacy_rel_pos"
            if selfattention_layer_type == "rel_selfattn":
                selfattention_layer_type = "legacy_rel_selfattn"
        elif rel_pos_type == "latest":
            assert selfattention_layer_type != "legacy_rel_selfattn"
            assert pos_enc_layer_type != "legacy_rel_pos"
        else:
            raise ValueError("unknown rel_pos_type: " + rel_pos_type)

        activation = get_activation(activation_type)
        if pos_enc_layer_type == "abs_pos":
            pos_enc_class = PositionalEncoding
        elif pos_enc_layer_type == "scaled_abs_pos":
            pos_enc_class = ScaledPositionalEncoding
        elif pos_enc_layer_type == "rel_pos":
            assert selfattention_layer_type == "rel_selfattn"
            pos_enc_class = RelPositionalEncoding
        elif pos_enc_layer_type == "legacy_rel_pos":
            assert selfattention_layer_type == "legacy_rel_selfattn"
            pos_enc_class = LegacyRelPositionalEncoding
            logging.warning(
                "Using legacy_rel_pos and it will be deprecated in the future."
            )
        else:
            raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)

        if input_layer == "linear":
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(input_size, output_size),
                torch.nn.LayerNorm(output_size),
                torch.nn.Dropout(dropout_rate),
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "conv2d":
            self.embed = Conv2dSubsampling(
                input_size,
                output_size,
                dropout_rate,
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "conv2d6":
            self.embed = Conv2dSubsampling6(
                input_size,
                output_size,
                dropout_rate,
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "conv2d8":
            self.embed = Conv2dSubsampling8(
                input_size,
                output_size,
                dropout_rate,
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif isinstance(input_layer, torch.nn.Module):
            self.embed = torch.nn.Sequential(
                input_layer,
                pos_enc_class(output_size, positional_dropout_rate),
            )
        elif input_layer is None:
            self.embed = torch.nn.Sequential(
                pos_enc_class(output_size, positional_dropout_rate)
            )
        else:
            raise ValueError("unknown input_layer: " + input_layer)
        self.normalize_before = normalize_before
        if positionwise_layer_type == "linear":
            positionwise_layer = PositionwiseFeedForward
            positionwise_layer_args = (
                output_size,
                linear_units,
                dropout_rate,
                activation,
            )
        elif positionwise_layer_type == "conv1d":
            positionwise_layer = MultiLayeredConv1d
            positionwise_layer_args = (
                output_size,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        elif positionwise_layer_type == "conv1d-linear":
            positionwise_layer = Conv1dLinear
            positionwise_layer_args = (
                output_size,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        else:
            raise NotImplementedError("Support only linear or conv1d.")

        if selfattention_layer_type == "selfattn":
            encoder_selfattn_layer = MultiHeadedAttention
            encoder_selfattn_layer_args = (
                attention_heads,
                output_size,
                attention_dropout_rate,
            )
        elif selfattention_layer_type == "legacy_rel_selfattn":
            assert pos_enc_layer_type == "legacy_rel_pos"
            encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention
            encoder_selfattn_layer_args = (
                attention_heads,
                output_size,
                attention_dropout_rate,
            )
            logging.warning(
                "Using legacy_rel_selfattn and it will be deprecated in the future."
            )
        elif selfattention_layer_type == "rel_selfattn":
            assert pos_enc_layer_type == "rel_pos"
            encoder_selfattn_layer = RelPositionMultiHeadedAttention
            encoder_selfattn_layer_args = (
                attention_heads,
                output_size,
                attention_dropout_rate,
                zero_triu,
            )
        else:
            raise ValueError("unknown encoder_attn_layer: " + selfattention_layer_type)

        convolution_layer = ConvolutionModule
        convolution_layer_args = (output_size, cnn_module_kernel, activation)
        encoder_selfattn_layer_raw = MultiHeadedAttention
        encoder_selfattn_layer_args_raw = (
            attention_heads,
            output_size,
            attention_dropout_rate,
        )
        self.encoders = repeat(
            num_blocks,
            lambda lnum: EncoderLayer(
                output_size,
                encoder_selfattn_layer_raw(*encoder_selfattn_layer_args_raw),
                encoder_selfattn_layer(*encoder_selfattn_layer_args),
                positionwise_layer(*positionwise_layer_args),
                positionwise_layer(*positionwise_layer_args) if macaron_style else None,
                convolution_layer(*convolution_layer_args) if use_cnn_module else None,
                dropout_rate,
                normalize_before,
                concat_after,
            ),
        )
        if self.normalize_before:
            self.after_norm = LayerNorm(output_size)
        self.conv1 = torch.nn.Conv2d(8, 16, [5, 7], stride=[1, 1], padding=(2, 3))

        self.conv2 = torch.nn.Conv2d(16, 32, [5, 7], stride=[1, 1], padding=(2, 3))

        self.conv3 = torch.nn.Conv2d(32, 16, [5, 7], stride=[1, 1], padding=(2, 3))

        self.conv4 = torch.nn.Conv2d(16, 1, [5, 7], stride=[1, 1], padding=(2, 3))

    def output_size(self) -> int:
        return self._output_size

    def forward(
        self,
        xs_pad: torch.Tensor,
        ilens: torch.Tensor,
        channel_size: torch.Tensor,
        prev_states: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        """Calculate forward propagation.
        Args:
            xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
            ilens (torch.Tensor): Input length (#batch).
            prev_states (torch.Tensor): Not to be used now.
        Returns:
            torch.Tensor: Output tensor (#batch, L, output_size).
            torch.Tensor: Output length (#batch).
            torch.Tensor: Not to be used now.
        """
        masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
        if (
            isinstance(self.embed, Conv2dSubsampling)
            or isinstance(self.embed, Conv2dSubsampling6)
            or isinstance(self.embed, Conv2dSubsampling8)
        ):
            short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
            if short_status:
                raise TooShortUttError(
                    f"has {xs_pad.size(1)} frames and is too short for subsampling "
                    + f"(it needs more than {limit_size} frames), return empty results",
                    xs_pad.size(1),
                    limit_size,
                )
            xs_pad, masks = self.embed(xs_pad, masks)
        else:
            xs_pad = self.embed(xs_pad)
        xs_pad, masks, channel_size = self.encoders(xs_pad, masks, channel_size)
        if isinstance(xs_pad, tuple):
            xs_pad = xs_pad[0]

        t_leng = xs_pad.size(1)
        d_dim = xs_pad.size(2)
        xs_pad = xs_pad.reshape(-1, channel_size, t_leng, d_dim)
        # pdb.set_trace()
        if channel_size < 8:
            repeat_num = math.ceil(8 / channel_size)
            xs_pad = xs_pad.repeat(1, repeat_num, 1, 1)[:, 0:8, :, :]
        xs_pad = self.conv1(xs_pad)
        xs_pad = self.conv2(xs_pad)
        xs_pad = self.conv3(xs_pad)
        xs_pad = self.conv4(xs_pad)
        xs_pad = xs_pad.squeeze().reshape(-1, t_leng, d_dim)
        mask_tmp = masks.size(1)
        masks = masks.reshape(-1, channel_size, mask_tmp, t_leng)[:, 0, :, :]

        if self.normalize_before:
            xs_pad = self.after_norm(xs_pad)

        olens = masks.squeeze(1).sum(1)
        return xs_pad, olens, None

    def forward_hidden(
        self,
        xs_pad: torch.Tensor,
        ilens: torch.Tensor,
        prev_states: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        """Calculate forward propagation.
        Args:
            xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
            ilens (torch.Tensor): Input length (#batch).
            prev_states (torch.Tensor): Not to be used now.
        Returns:
            torch.Tensor: Output tensor (#batch, L, output_size).
            torch.Tensor: Output length (#batch).
            torch.Tensor: Not to be used now.
        """
        masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
        if (
            isinstance(self.embed, Conv2dSubsampling)
            or isinstance(self.embed, Conv2dSubsampling6)
            or isinstance(self.embed, Conv2dSubsampling8)
        ):
            short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
            if short_status:
                raise TooShortUttError(
                    f"has {xs_pad.size(1)} frames and is too short for subsampling "
                    + f"(it needs more than {limit_size} frames), return empty results",
                    xs_pad.size(1),
                    limit_size,
                )
            xs_pad, masks = self.embed(xs_pad, masks)
        else:
            xs_pad = self.embed(xs_pad)
        num_layer = len(self.encoders)
        for idx, encoder in enumerate(self.encoders):
            xs_pad, masks = encoder(xs_pad, masks)
            if idx == num_layer // 2 - 1:
                hidden_feature = xs_pad
        if isinstance(xs_pad, tuple):
            xs_pad = xs_pad[0]
            hidden_feature = hidden_feature[0]
        if self.normalize_before:
            xs_pad = self.after_norm(xs_pad)
            self.hidden_feature = self.after_norm(hidden_feature)

        olens = masks.squeeze(1).sum(1)
        return xs_pad, olens, None