Spaces:
Runtime error
Runtime error
File size: 17,797 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
from typing import Optional
from typing import Tuple
import logging
import torch
from torch import nn
from funasr_detach.models.encoder.encoder_layer_mfcca import EncoderLayer
from funasr_detach.models.transformer.utils.nets_utils import get_activation
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.attention import (
MultiHeadedAttention, # noqa: H301
RelPositionMultiHeadedAttention, # noqa: H301
LegacyRelPositionMultiHeadedAttention, # noqa: H301
)
from funasr_detach.models.transformer.embedding import (
PositionalEncoding, # noqa: H301
ScaledPositionalEncoding, # noqa: H301
RelPositionalEncoding, # noqa: H301
LegacyRelPositionalEncoding, # noqa: H301
)
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
from funasr_detach.models.transformer.positionwise_feed_forward import (
PositionwiseFeedForward, # noqa: H301
)
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError
from funasr_detach.models.transformer.utils.subsampling import check_short_utt
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
import pdb
import math
class ConvolutionModule(nn.Module):
"""ConvolutionModule in Conformer model.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernerl size of conv layers.
"""
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
"""Construct an ConvolutionModule object."""
super(ConvolutionModule, self).__init__()
# kernerl_size should be a odd number for 'SAME' padding
assert (kernel_size - 1) % 2 == 0
self.pointwise_conv1 = nn.Conv1d(
channels,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.depthwise_conv = nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
groups=channels,
bias=bias,
)
self.norm = nn.BatchNorm1d(channels)
self.pointwise_conv2 = nn.Conv1d(
channels,
channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.activation = activation
def forward(self, x):
"""Compute convolution module.
Args:
x (torch.Tensor): Input tensor (#batch, time, channels).
Returns:
torch.Tensor: Output tensor (#batch, time, channels).
"""
# exchange the temporal dimension and the feature dimension
x = x.transpose(1, 2)
# GLU mechanism
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
# 1D Depthwise Conv
x = self.depthwise_conv(x)
x = self.activation(self.norm(x))
x = self.pointwise_conv2(x)
return x.transpose(1, 2)
class MFCCAEncoder(AbsEncoder):
"""Conformer encoder module.
Args:
input_size (int): Input dimension.
output_size (int): Dimention of attention.
attention_heads (int): The number of heads of multi head attention.
linear_units (int): The number of units of position-wise feed forward.
num_blocks (int): The number of decoder blocks.
dropout_rate (float): Dropout rate.
attention_dropout_rate (float): Dropout rate in attention.
positional_dropout_rate (float): Dropout rate after adding positional encoding.
input_layer (Union[str, torch.nn.Module]): Input layer type.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
If True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
If False, no additional linear will be applied. i.e. x -> x + att(x)
positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear".
positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer.
rel_pos_type (str): Whether to use the latest relative positional encoding or
the legacy one. The legacy relative positional encoding will be deprecated
in the future. More Details can be found in
https://github.com/espnet/espnet/pull/2816.
encoder_pos_enc_layer_type (str): Encoder positional encoding layer type.
encoder_attn_layer_type (str): Encoder attention layer type.
activation_type (str): Encoder activation function type.
macaron_style (bool): Whether to use macaron style for positionwise layer.
use_cnn_module (bool): Whether to use convolution module.
zero_triu (bool): Whether to zero the upper triangular part of attention matrix.
cnn_module_kernel (int): Kernerl size of convolution module.
padding_idx (int): Padding idx for input_layer=embed.
"""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = "conv2d",
normalize_before: bool = True,
concat_after: bool = False,
positionwise_layer_type: str = "linear",
positionwise_conv_kernel_size: int = 3,
macaron_style: bool = False,
rel_pos_type: str = "legacy",
pos_enc_layer_type: str = "rel_pos",
selfattention_layer_type: str = "rel_selfattn",
activation_type: str = "swish",
use_cnn_module: bool = True,
zero_triu: bool = False,
cnn_module_kernel: int = 31,
padding_idx: int = -1,
):
super().__init__()
self._output_size = output_size
if rel_pos_type == "legacy":
if pos_enc_layer_type == "rel_pos":
pos_enc_layer_type = "legacy_rel_pos"
if selfattention_layer_type == "rel_selfattn":
selfattention_layer_type = "legacy_rel_selfattn"
elif rel_pos_type == "latest":
assert selfattention_layer_type != "legacy_rel_selfattn"
assert pos_enc_layer_type != "legacy_rel_pos"
else:
raise ValueError("unknown rel_pos_type: " + rel_pos_type)
activation = get_activation(activation_type)
if pos_enc_layer_type == "abs_pos":
pos_enc_class = PositionalEncoding
elif pos_enc_layer_type == "scaled_abs_pos":
pos_enc_class = ScaledPositionalEncoding
elif pos_enc_layer_type == "rel_pos":
assert selfattention_layer_type == "rel_selfattn"
pos_enc_class = RelPositionalEncoding
elif pos_enc_layer_type == "legacy_rel_pos":
assert selfattention_layer_type == "legacy_rel_selfattn"
pos_enc_class = LegacyRelPositionalEncoding
logging.warning(
"Using legacy_rel_pos and it will be deprecated in the future."
)
else:
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
if input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(input_size, output_size),
torch.nn.LayerNorm(output_size),
torch.nn.Dropout(dropout_rate),
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d":
self.embed = Conv2dSubsampling(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d6":
self.embed = Conv2dSubsampling6(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d8":
self.embed = Conv2dSubsampling8(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
pos_enc_class(output_size, positional_dropout_rate),
)
elif isinstance(input_layer, torch.nn.Module):
self.embed = torch.nn.Sequential(
input_layer,
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer is None:
self.embed = torch.nn.Sequential(
pos_enc_class(output_size, positional_dropout_rate)
)
else:
raise ValueError("unknown input_layer: " + input_layer)
self.normalize_before = normalize_before
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
)
elif positionwise_layer_type == "conv1d":
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
elif positionwise_layer_type == "conv1d-linear":
positionwise_layer = Conv1dLinear
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
else:
raise NotImplementedError("Support only linear or conv1d.")
if selfattention_layer_type == "selfattn":
encoder_selfattn_layer = MultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
)
elif selfattention_layer_type == "legacy_rel_selfattn":
assert pos_enc_layer_type == "legacy_rel_pos"
encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
)
logging.warning(
"Using legacy_rel_selfattn and it will be deprecated in the future."
)
elif selfattention_layer_type == "rel_selfattn":
assert pos_enc_layer_type == "rel_pos"
encoder_selfattn_layer = RelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
zero_triu,
)
else:
raise ValueError("unknown encoder_attn_layer: " + selfattention_layer_type)
convolution_layer = ConvolutionModule
convolution_layer_args = (output_size, cnn_module_kernel, activation)
encoder_selfattn_layer_raw = MultiHeadedAttention
encoder_selfattn_layer_args_raw = (
attention_heads,
output_size,
attention_dropout_rate,
)
self.encoders = repeat(
num_blocks,
lambda lnum: EncoderLayer(
output_size,
encoder_selfattn_layer_raw(*encoder_selfattn_layer_args_raw),
encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
positionwise_layer(*positionwise_layer_args) if macaron_style else None,
convolution_layer(*convolution_layer_args) if use_cnn_module else None,
dropout_rate,
normalize_before,
concat_after,
),
)
if self.normalize_before:
self.after_norm = LayerNorm(output_size)
self.conv1 = torch.nn.Conv2d(8, 16, [5, 7], stride=[1, 1], padding=(2, 3))
self.conv2 = torch.nn.Conv2d(16, 32, [5, 7], stride=[1, 1], padding=(2, 3))
self.conv3 = torch.nn.Conv2d(32, 16, [5, 7], stride=[1, 1], padding=(2, 3))
self.conv4 = torch.nn.Conv2d(16, 1, [5, 7], stride=[1, 1], padding=(2, 3))
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
channel_size: torch.Tensor,
prev_states: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Calculate forward propagation.
Args:
xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
ilens (torch.Tensor): Input length (#batch).
prev_states (torch.Tensor): Not to be used now.
Returns:
torch.Tensor: Output tensor (#batch, L, output_size).
torch.Tensor: Output length (#batch).
torch.Tensor: Not to be used now.
"""
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
if (
isinstance(self.embed, Conv2dSubsampling)
or isinstance(self.embed, Conv2dSubsampling6)
or isinstance(self.embed, Conv2dSubsampling8)
):
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
if short_status:
raise TooShortUttError(
f"has {xs_pad.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
xs_pad.size(1),
limit_size,
)
xs_pad, masks = self.embed(xs_pad, masks)
else:
xs_pad = self.embed(xs_pad)
xs_pad, masks, channel_size = self.encoders(xs_pad, masks, channel_size)
if isinstance(xs_pad, tuple):
xs_pad = xs_pad[0]
t_leng = xs_pad.size(1)
d_dim = xs_pad.size(2)
xs_pad = xs_pad.reshape(-1, channel_size, t_leng, d_dim)
# pdb.set_trace()
if channel_size < 8:
repeat_num = math.ceil(8 / channel_size)
xs_pad = xs_pad.repeat(1, repeat_num, 1, 1)[:, 0:8, :, :]
xs_pad = self.conv1(xs_pad)
xs_pad = self.conv2(xs_pad)
xs_pad = self.conv3(xs_pad)
xs_pad = self.conv4(xs_pad)
xs_pad = xs_pad.squeeze().reshape(-1, t_leng, d_dim)
mask_tmp = masks.size(1)
masks = masks.reshape(-1, channel_size, mask_tmp, t_leng)[:, 0, :, :]
if self.normalize_before:
xs_pad = self.after_norm(xs_pad)
olens = masks.squeeze(1).sum(1)
return xs_pad, olens, None
def forward_hidden(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Calculate forward propagation.
Args:
xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
ilens (torch.Tensor): Input length (#batch).
prev_states (torch.Tensor): Not to be used now.
Returns:
torch.Tensor: Output tensor (#batch, L, output_size).
torch.Tensor: Output length (#batch).
torch.Tensor: Not to be used now.
"""
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
if (
isinstance(self.embed, Conv2dSubsampling)
or isinstance(self.embed, Conv2dSubsampling6)
or isinstance(self.embed, Conv2dSubsampling8)
):
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
if short_status:
raise TooShortUttError(
f"has {xs_pad.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
xs_pad.size(1),
limit_size,
)
xs_pad, masks = self.embed(xs_pad, masks)
else:
xs_pad = self.embed(xs_pad)
num_layer = len(self.encoders)
for idx, encoder in enumerate(self.encoders):
xs_pad, masks = encoder(xs_pad, masks)
if idx == num_layer // 2 - 1:
hidden_feature = xs_pad
if isinstance(xs_pad, tuple):
xs_pad = xs_pad[0]
hidden_feature = hidden_feature[0]
if self.normalize_before:
xs_pad = self.after_norm(xs_pad)
self.hidden_feature = self.after_norm(hidden_feature)
olens = masks.squeeze(1).sum(1)
return xs_pad, olens, None
|