Spaces:
Runtime error
Runtime error
File size: 10,168 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange
def identity(t, *args, **kwargs):
return t
def append_dims(x, num_dims):
if num_dims <= 0:
return x
return x.view(*x.shape, *((1,) * num_dims))
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def padding_to_multiple_of(n, mult):
remainder = n % mult
if remainder == 0:
return 0
return mult - remainder
class Transpose(nn.Module):
"""Wrapper class of torch.transpose() for Sequential module."""
def __init__(self, shape: tuple):
super(Transpose, self).__init__()
self.shape = shape
def forward(self, x):
return x.transpose(*self.shape)
class DepthwiseConv1d(nn.Module):
"""
When groups == in_channels and out_channels == K * in_channels, where K is a positive integer,
this operation is termed in literature as depthwise convolution.
Args:
in_channels (int): Number of channels in the input
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
bias (bool, optional): If True, adds a learnable bias to the output. Default: True
Inputs: inputs
- **inputs** (batch, in_channels, time): Tensor containing input vector
Returns: outputs
- **outputs** (batch, out_channels, time): Tensor produces by depthwise 1-D convolution.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
bias: bool = False,
) -> None:
super(DepthwiseConv1d, self).__init__()
assert (
out_channels % in_channels == 0
), "out_channels should be constant multiple of in_channels"
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
groups=in_channels,
stride=stride,
padding=padding,
bias=bias,
)
def forward(self, inputs):
return self.conv(inputs)
class ConvModule(nn.Module):
"""
Conformer convolution module starts with a pointwise convolution and a gated linear unit (GLU).
This is followed by a single 1-D depthwise convolution layer. Batchnorm is deployed just after the convolution
to aid training deep models.
Args:
in_channels (int): Number of channels in the input
kernel_size (int or tuple, optional): Size of the convolving kernel Default: 31
dropout_p (float, optional): probability of dropout
Inputs: inputs
inputs (batch, time, dim): Tensor contains input sequences
Outputs: outputs
outputs (batch, time, dim): Tensor produces by conformer convolution module.
"""
def __init__(
self,
in_channels: int,
kernel_size: int = 17,
expansion_factor: int = 2,
dropout_p: float = 0.1,
) -> None:
super(ConvModule, self).__init__()
assert (
kernel_size - 1
) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding"
assert expansion_factor == 2, "Currently, Only Supports expansion_factor 2"
self.sequential = nn.Sequential(
Transpose(shape=(1, 2)),
DepthwiseConv1d(
in_channels,
in_channels,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
),
)
def forward(self, inputs):
return inputs + self.sequential(inputs).transpose(1, 2)
class OffsetScale(nn.Module):
def __init__(self, dim, heads=1):
super().__init__()
self.gamma = nn.Parameter(torch.ones(heads, dim))
self.beta = nn.Parameter(torch.zeros(heads, dim))
nn.init.normal_(self.gamma, std=0.02)
def forward(self, x):
out = einsum("... d, h d -> ... h d", x, self.gamma) + self.beta
return out.unbind(dim=-2)
class FFConvM(nn.Module):
def __init__(self, dim_in, dim_out, norm_klass=nn.LayerNorm, dropout=0.1):
super().__init__()
self.mdl = nn.Sequential(
norm_klass(dim_in),
nn.Linear(dim_in, dim_out),
nn.SiLU(),
ConvModule(dim_out),
nn.Dropout(dropout),
)
def forward(
self,
x,
):
output = self.mdl(x)
return output
class FLASH_ShareA_FFConvM(nn.Module):
def __init__(
self,
*,
dim,
group_size=256,
query_key_dim=128,
expansion_factor=1.0,
causal=False,
dropout=0.1,
rotary_pos_emb=None,
norm_klass=nn.LayerNorm,
shift_tokens=True
):
super().__init__()
hidden_dim = int(dim * expansion_factor)
self.group_size = group_size
self.causal = causal
self.shift_tokens = shift_tokens
# positional embeddings
self.rotary_pos_emb = rotary_pos_emb
# norm
self.dropout = nn.Dropout(dropout)
# projections
self.to_hidden = FFConvM(
dim_in=dim,
dim_out=hidden_dim,
norm_klass=norm_klass,
dropout=dropout,
)
self.to_qk = FFConvM(
dim_in=dim,
dim_out=query_key_dim,
norm_klass=norm_klass,
dropout=dropout,
)
self.qk_offset_scale = OffsetScale(query_key_dim, heads=4)
self.to_out = FFConvM(
dim_in=dim * 2,
dim_out=dim,
norm_klass=norm_klass,
dropout=dropout,
)
self.gateActivate = nn.Sigmoid()
def forward(self, x, *, mask=None):
"""
b - batch
n - sequence length (within groups)
g - group dimension
d - feature dimension (keys)
e - feature dimension (values)
i - sequence dimension (source)
j - sequence dimension (target)
"""
normed_x = x
# do token shift - a great, costless trick from an independent AI researcher in Shenzhen
residual = x
if self.shift_tokens:
x_shift, x_pass = normed_x.chunk(2, dim=-1)
x_shift = F.pad(x_shift, (0, 0, 1, -1), value=0.0)
normed_x = torch.cat((x_shift, x_pass), dim=-1)
# initial projections
v, u = self.to_hidden(normed_x).chunk(2, dim=-1)
qk = self.to_qk(normed_x)
# offset and scale
quad_q, lin_q, quad_k, lin_k = self.qk_offset_scale(qk)
att_v, att_u = self.cal_attention(x, quad_q, lin_q, quad_k, lin_k, v, u)
out = (att_u * v) * self.gateActivate(att_v * u)
x = x + self.to_out(out)
return x
def cal_attention(self, x, quad_q, lin_q, quad_k, lin_k, v, u, mask=None):
b, n, device, g = x.shape[0], x.shape[-2], x.device, self.group_size
if exists(mask):
lin_mask = rearrange(mask, "... -> ... 1")
lin_k = lin_k.masked_fill(~lin_mask, 0.0)
# rotate queries and keys
if exists(self.rotary_pos_emb):
quad_q, lin_q, quad_k, lin_k = map(
self.rotary_pos_emb.rotate_queries_or_keys,
(quad_q, lin_q, quad_k, lin_k),
)
# padding for groups
padding = padding_to_multiple_of(n, g)
if padding > 0:
quad_q, quad_k, lin_q, lin_k, v, u = map(
lambda t: F.pad(t, (0, 0, 0, padding), value=0.0),
(quad_q, quad_k, lin_q, lin_k, v, u),
)
mask = default(mask, torch.ones((b, n), device=device, dtype=torch.bool))
mask = F.pad(mask, (0, padding), value=False)
# group along sequence
quad_q, quad_k, lin_q, lin_k, v, u = map(
lambda t: rearrange(t, "b (g n) d -> b g n d", n=self.group_size),
(quad_q, quad_k, lin_q, lin_k, v, u),
)
if exists(mask):
mask = rearrange(mask, "b (g j) -> b g 1 j", j=g)
# calculate quadratic attention output
sim = einsum("... i d, ... j d -> ... i j", quad_q, quad_k) / g
attn = F.relu(sim) ** 2
attn = self.dropout(attn)
if exists(mask):
attn = attn.masked_fill(~mask, 0.0)
if self.causal:
causal_mask = torch.ones((g, g), dtype=torch.bool, device=device).triu(1)
attn = attn.masked_fill(causal_mask, 0.0)
quad_out_v = einsum("... i j, ... j d -> ... i d", attn, v)
quad_out_u = einsum("... i j, ... j d -> ... i d", attn, u)
# calculate linear attention output
if self.causal:
lin_kv = einsum("b g n d, b g n e -> b g d e", lin_k, v) / g
# exclusive cumulative sum along group dimension
lin_kv = lin_kv.cumsum(dim=1)
lin_kv = F.pad(lin_kv, (0, 0, 0, 0, 1, -1), value=0.0)
lin_out_v = einsum("b g d e, b g n d -> b g n e", lin_kv, lin_q)
lin_ku = einsum("b g n d, b g n e -> b g d e", lin_k, u) / g
# exclusive cumulative sum along group dimension
lin_ku = lin_ku.cumsum(dim=1)
lin_ku = F.pad(lin_ku, (0, 0, 0, 0, 1, -1), value=0.0)
lin_out_u = einsum("b g d e, b g n d -> b g n e", lin_ku, lin_q)
else:
lin_kv = einsum("b g n d, b g n e -> b d e", lin_k, v) / n
lin_out_v = einsum("b g n d, b d e -> b g n e", lin_q, lin_kv)
lin_ku = einsum("b g n d, b g n e -> b d e", lin_k, u) / n
lin_out_u = einsum("b g n d, b d e -> b g n e", lin_q, lin_ku)
# fold back groups into full sequence, and excise out padding
return map(
lambda t: rearrange(t, "b g n d -> b (g n) d")[:, :n],
(quad_out_v + lin_out_v, quad_out_u + lin_out_u),
)
|