File size: 8,505 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import math
import torch
from typing import Optional, Tuple, Union
from funasr_detach.models.transformer.utils.nets_utils import pad_to_len


class TooShortUttError(Exception):
    """Raised when the utt is too short for subsampling.

    Args:
        message (str): Message for error catch
        actual_size (int): the short size that cannot pass the subsampling
        limit (int): the limit size for subsampling

    """

    def __init__(self, message, actual_size, limit):
        """Construct a TooShortUttError for error handler."""
        super().__init__(message)
        self.actual_size = actual_size
        self.limit = limit


def check_short_utt(ins, size):
    """Check if the utterance is too short for subsampling."""
    if isinstance(ins, Conv2dSubsampling2) and size < 3:
        return True, 3
    if isinstance(ins, Conv2dSubsampling) and size < 7:
        return True, 7
    if isinstance(ins, Conv2dSubsampling6) and size < 11:
        return True, 11
    if isinstance(ins, Conv2dSubsampling8) and size < 15:
        return True, 15
    return False, -1


class RWKVConvInput(torch.nn.Module):
    """Streaming ConvInput module definition.
    Args:
        input_size: Input size.
        conv_size: Convolution size.
        subsampling_factor: Subsampling factor.
        output_size: Block output dimension.
    """

    def __init__(
        self,
        input_size: int,
        conv_size: Union[int, Tuple],
        subsampling_factor: int = 4,
        conv_kernel_size: int = 3,
        output_size: Optional[int] = None,
    ) -> None:
        """Construct a ConvInput object."""
        super().__init__()
        if subsampling_factor == 1:
            conv_size1, conv_size2, conv_size3 = conv_size

            self.conv = torch.nn.Sequential(
                torch.nn.Conv2d(
                    1,
                    conv_size1,
                    conv_kernel_size,
                    stride=1,
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
                torch.nn.Conv2d(
                    conv_size1,
                    conv_size1,
                    conv_kernel_size,
                    stride=[1, 2],
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
                torch.nn.Conv2d(
                    conv_size1,
                    conv_size2,
                    conv_kernel_size,
                    stride=1,
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
                torch.nn.Conv2d(
                    conv_size2,
                    conv_size2,
                    conv_kernel_size,
                    stride=[1, 2],
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
                torch.nn.Conv2d(
                    conv_size2,
                    conv_size3,
                    conv_kernel_size,
                    stride=1,
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
                torch.nn.Conv2d(
                    conv_size3,
                    conv_size3,
                    conv_kernel_size,
                    stride=[1, 2],
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
            )

            output_proj = conv_size3 * ((input_size // 2) // 2)

            self.subsampling_factor = 1

            self.stride_1 = 1

            self.create_new_mask = self.create_new_vgg_mask

        else:
            conv_size1, conv_size2, conv_size3 = conv_size

            kernel_1 = int(subsampling_factor / 2)

            self.conv = torch.nn.Sequential(
                torch.nn.Conv2d(
                    1,
                    conv_size1,
                    conv_kernel_size,
                    stride=1,
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
                torch.nn.Conv2d(
                    conv_size1,
                    conv_size1,
                    conv_kernel_size,
                    stride=[kernel_1, 2],
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
                torch.nn.Conv2d(
                    conv_size1,
                    conv_size2,
                    conv_kernel_size,
                    stride=1,
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
                torch.nn.Conv2d(
                    conv_size2,
                    conv_size2,
                    conv_kernel_size,
                    stride=[2, 2],
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
                torch.nn.Conv2d(
                    conv_size2,
                    conv_size3,
                    conv_kernel_size,
                    stride=1,
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
                torch.nn.Conv2d(
                    conv_size3,
                    conv_size3,
                    conv_kernel_size,
                    stride=1,
                    padding=(conv_kernel_size - 1) // 2,
                ),
                torch.nn.ReLU(),
            )

            output_proj = conv_size3 * ((input_size // 2) // 2)

            self.subsampling_factor = subsampling_factor

            self.create_new_mask = self.create_new_vgg_mask

            self.stride_1 = kernel_1

        self.min_frame_length = 7

        if output_size is not None:
            self.output = torch.nn.Linear(output_proj, output_size)
            self.output_size = output_size
        else:
            self.output = None
            self.output_size = output_proj

    def forward(
        self,
        x: torch.Tensor,
        mask: Optional[torch.Tensor],
        chunk_size: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Encode input sequences.
        Args:
            x: ConvInput input sequences. (B, T, D_feats)
            mask: Mask of input sequences. (B, 1, T)
        Returns:
            x: ConvInput output sequences. (B, sub(T), D_out)
            mask: Mask of output sequences. (B, 1, sub(T))
        """
        if mask is not None:
            mask = self.create_new_mask(mask)
            olens = max(mask.eq(0).sum(1))

        b, t, f = x.size()
        x = x.unsqueeze(1)  # (b. 1. t. f)

        if chunk_size is not None:
            max_input_length = int(
                chunk_size
                * self.subsampling_factor
                * (math.ceil(float(t) / (chunk_size * self.subsampling_factor)))
            )
            x = map(lambda inputs: pad_to_len(inputs, max_input_length, 1), x)
            x = list(x)
            x = torch.stack(x, dim=0)
            N_chunks = max_input_length // (chunk_size * self.subsampling_factor)
            x = x.view(b * N_chunks, 1, chunk_size * self.subsampling_factor, f)

        x = self.conv(x)

        _, c, _, f = x.size()
        if chunk_size is not None:
            x = x.transpose(1, 2).contiguous().view(b, -1, c * f)[:, :olens, :]
        else:
            x = x.transpose(1, 2).contiguous().view(b, -1, c * f)

        if self.output is not None:
            x = self.output(x)

        return x, mask[:, :olens][:, : x.size(1)]

    def create_new_vgg_mask(self, mask: torch.Tensor) -> torch.Tensor:
        """Create a new mask for VGG output sequences.
        Args:
            mask: Mask of input sequences. (B, T)
        Returns:
            mask: Mask of output sequences. (B, sub(T))
        """
        if self.subsampling_factor > 1:
            return mask[:, ::2][:, :: self.stride_1]
        else:
            return mask

    def get_size_before_subsampling(self, size: int) -> int:
        """Return the original size before subsampling for a given size.
        Args:
            size: Number of frames after subsampling.
        Returns:
            : Number of frames before subsampling.
        """
        return size * self.subsampling_factor