File size: 19,148 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved.
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

import logging
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union

import torch
import torch.nn.functional as F

from funasr_detach.layers.abs_normalize import AbsNormalize
from funasr_detach.losses.label_smoothing_loss import (
    LabelSmoothingLoss,
    NllLoss,
)  # noqa: H301
from funasr_detach.models.ctc import CTC
from funasr_detach.models.decoder.abs_decoder import AbsDecoder
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
from funasr_detach.frontends.abs_frontend import AbsFrontend
from funasr_detach.models.postencoder.abs_postencoder import AbsPostEncoder
from funasr_detach.models.preencoder.abs_preencoder import AbsPreEncoder
from funasr_detach.models.specaug.abs_specaug import AbsSpecAug
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.metrics import ErrorCalculator
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.models.base_model import FunASRModel

if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


class SAASRModel(FunASRModel):
    """CTC-attention hybrid Encoder-Decoder model"""

    def __init__(
        self,
        vocab_size: int,
        max_spk_num: int,
        token_list: Union[Tuple[str, ...], List[str]],
        frontend: Optional[AbsFrontend],
        specaug: Optional[AbsSpecAug],
        normalize: Optional[AbsNormalize],
        asr_encoder: AbsEncoder,
        spk_encoder: torch.nn.Module,
        decoder: AbsDecoder,
        ctc: CTC,
        spk_weight: float = 0.5,
        ctc_weight: float = 0.5,
        interctc_weight: float = 0.0,
        ignore_id: int = -1,
        lsm_weight: float = 0.0,
        length_normalized_loss: bool = False,
        report_cer: bool = True,
        report_wer: bool = True,
        sym_space: str = "<space>",
        sym_blank: str = "<blank>",
        extract_feats_in_collect_stats: bool = True,
    ):
        assert 0.0 <= ctc_weight <= 1.0, ctc_weight
        assert 0.0 <= interctc_weight < 1.0, interctc_weight

        super().__init__()
        # note that eos is the same as sos (equivalent ID)
        self.blank_id = 0
        self.sos = 1
        self.eos = 2
        self.vocab_size = vocab_size
        self.max_spk_num = max_spk_num
        self.ignore_id = ignore_id
        self.spk_weight = spk_weight
        self.ctc_weight = ctc_weight
        self.interctc_weight = interctc_weight
        self.token_list = token_list.copy()

        self.frontend = frontend
        self.specaug = specaug
        self.normalize = normalize
        self.asr_encoder = asr_encoder
        self.spk_encoder = spk_encoder

        if not hasattr(self.asr_encoder, "interctc_use_conditioning"):
            self.asr_encoder.interctc_use_conditioning = False
        if self.asr_encoder.interctc_use_conditioning:
            self.asr_encoder.conditioning_layer = torch.nn.Linear(
                vocab_size, self.asr_encoder.output_size()
            )

        self.error_calculator = None

        # we set self.decoder = None in the CTC mode since
        # self.decoder parameters were never used and PyTorch complained
        # and threw an Exception in the multi-GPU experiment.
        # thanks Jeff Farris for pointing out the issue.
        if ctc_weight == 1.0:
            self.decoder = None
        else:
            self.decoder = decoder

        self.criterion_att = LabelSmoothingLoss(
            size=vocab_size,
            padding_idx=ignore_id,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )

        self.criterion_spk = NllLoss(
            size=max_spk_num,
            padding_idx=ignore_id,
            normalize_length=length_normalized_loss,
        )

        if report_cer or report_wer:
            self.error_calculator = ErrorCalculator(
                token_list, sym_space, sym_blank, report_cer, report_wer
            )

        if ctc_weight == 0.0:
            self.ctc = None
        else:
            self.ctc = ctc

        self.extract_feats_in_collect_stats = extract_feats_in_collect_stats

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
        profile: torch.Tensor,
        profile_lengths: torch.Tensor,
        text_id: torch.Tensor,
        text_id_lengths: torch.Tensor,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
        """Frontend + Encoder + Decoder + Calc loss

        Args:
            speech: (Batch, Length, ...)
            speech_lengths: (Batch, )
            text: (Batch, Length)
            text_lengths: (Batch,)
            profile: (Batch, Length, Dim)
            profile_lengths: (Batch,)
        """
        assert text_lengths.dim() == 1, text_lengths.shape
        # Check that batch_size is unified
        assert (
            speech.shape[0]
            == speech_lengths.shape[0]
            == text.shape[0]
            == text_lengths.shape[0]
        ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
        batch_size = speech.shape[0]

        # for data-parallel
        text = text[:, : text_lengths.max()]

        # 1. Encoder
        asr_encoder_out, encoder_out_lens, spk_encoder_out = self.encode(
            speech, speech_lengths
        )
        intermediate_outs = None
        if isinstance(asr_encoder_out, tuple):
            intermediate_outs = asr_encoder_out[1]
            asr_encoder_out = asr_encoder_out[0]

        loss_att, loss_spk, acc_att, acc_spk, cer_att, wer_att = (
            None,
            None,
            None,
            None,
            None,
            None,
        )
        loss_ctc, cer_ctc = None, None
        stats = dict()

        # 1. CTC branch
        if self.ctc_weight != 0.0:
            loss_ctc, cer_ctc = self._calc_ctc_loss(
                asr_encoder_out, encoder_out_lens, text, text_lengths
            )

        # Intermediate CTC (optional)
        loss_interctc = 0.0
        if self.interctc_weight != 0.0 and intermediate_outs is not None:
            for layer_idx, intermediate_out in intermediate_outs:
                # we assume intermediate_out has the same length & padding
                # as those of encoder_out
                loss_ic, cer_ic = self._calc_ctc_loss(
                    intermediate_out, encoder_out_lens, text, text_lengths
                )
                loss_interctc = loss_interctc + loss_ic

                # Collect Intermedaite CTC stats
                stats["loss_interctc_layer{}".format(layer_idx)] = (
                    loss_ic.detach() if loss_ic is not None else None
                )
                stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic

            loss_interctc = loss_interctc / len(intermediate_outs)

            # calculate whole encoder loss
            loss_ctc = (
                1 - self.interctc_weight
            ) * loss_ctc + self.interctc_weight * loss_interctc

        # 2b. Attention decoder branch
        if self.ctc_weight != 1.0:
            loss_att, loss_spk, acc_att, acc_spk, cer_att, wer_att = (
                self._calc_att_loss(
                    asr_encoder_out,
                    spk_encoder_out,
                    encoder_out_lens,
                    text,
                    text_lengths,
                    profile,
                    profile_lengths,
                    text_id,
                    text_id_lengths,
                )
            )

        # 3. CTC-Att loss definition
        if self.ctc_weight == 0.0:
            loss_asr = loss_att
        elif self.ctc_weight == 1.0:
            loss_asr = loss_ctc
        else:
            loss_asr = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att

        if self.spk_weight == 0.0:
            loss = loss_asr
        else:
            loss = self.spk_weight * loss_spk + (1 - self.spk_weight) * loss_asr

        stats = dict(
            loss=loss.detach(),
            loss_asr=loss_asr.detach(),
            loss_att=loss_att.detach() if loss_att is not None else None,
            loss_ctc=loss_ctc.detach() if loss_ctc is not None else None,
            loss_spk=loss_spk.detach() if loss_spk is not None else None,
            acc=acc_att,
            acc_spk=acc_spk,
            cer=cer_att,
            wer=wer_att,
            cer_ctc=cer_ctc,
        )

        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def collect_feats(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
    ) -> Dict[str, torch.Tensor]:
        if self.extract_feats_in_collect_stats:
            feats, feats_lengths = self._extract_feats(speech, speech_lengths)
        else:
            # Generate dummy stats if extract_feats_in_collect_stats is False
            logging.warning(
                "Generating dummy stats for feats and feats_lengths, "
                "because encoder_conf.extract_feats_in_collect_stats is "
                f"{self.extract_feats_in_collect_stats}"
            )
            feats, feats_lengths = speech, speech_lengths
        return {"feats": feats, "feats_lengths": feats_lengths}

    def encode(
        self, speech: torch.Tensor, speech_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Frontend + Encoder. Note that this method is used by asr_inference.py

        Args:
            speech: (Batch, Length, ...)
            speech_lengths: (Batch, )
        """
        with autocast(False):
            # 1. Extract feats
            feats, feats_lengths = self._extract_feats(speech, speech_lengths)

            # 2. Data augmentation
            feats_raw = feats.clone()
            if self.specaug is not None and self.training:
                feats, feats_lengths = self.specaug(feats, feats_lengths)

            # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
            if self.normalize is not None:
                feats, feats_lengths = self.normalize(feats, feats_lengths)

        # 4. Forward encoder
        # feats: (Batch, Length, Dim)
        # -> encoder_out: (Batch, Length2, Dim2)
        if self.asr_encoder.interctc_use_conditioning:
            encoder_out, encoder_out_lens, _ = self.asr_encoder(
                feats, feats_lengths, ctc=self.ctc
            )
        else:
            encoder_out, encoder_out_lens, _ = self.asr_encoder(feats, feats_lengths)
        intermediate_outs = None
        if isinstance(encoder_out, tuple):
            intermediate_outs = encoder_out[1]
            encoder_out = encoder_out[0]

        encoder_out_spk_ori = self.spk_encoder(feats_raw, feats_lengths)[0]
        # import ipdb;ipdb.set_trace()
        if encoder_out_spk_ori.size(1) != encoder_out.size(1):
            encoder_out_spk = F.interpolate(
                encoder_out_spk_ori.transpose(-2, -1),
                size=(encoder_out.size(1)),
                mode="nearest",
            ).transpose(-2, -1)
        else:
            encoder_out_spk = encoder_out_spk_ori

        assert encoder_out.size(0) == speech.size(0), (
            encoder_out.size(),
            speech.size(0),
        )
        assert encoder_out.size(1) <= encoder_out_lens.max(), (
            encoder_out.size(),
            encoder_out_lens.max(),
        )
        assert encoder_out_spk.size(0) == speech.size(0), (
            encoder_out_spk.size(),
            speech.size(0),
        )

        if intermediate_outs is not None:
            return (encoder_out, intermediate_outs), encoder_out_lens, encoder_out_spk

        return encoder_out, encoder_out_lens, encoder_out_spk

    def _extract_feats(
        self, speech: torch.Tensor, speech_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        assert speech_lengths.dim() == 1, speech_lengths.shape

        # for data-parallel
        speech = speech[:, : speech_lengths.max()]

        if self.frontend is not None:
            # Frontend
            #  e.g. STFT and Feature extract
            #       data_loader may send time-domain signal in this case
            # speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
            feats, feats_lengths = self.frontend(speech, speech_lengths)
        else:
            # No frontend and no feature extract
            feats, feats_lengths = speech, speech_lengths
        return feats, feats_lengths

    def nll(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ) -> torch.Tensor:
        """Compute negative log likelihood(nll) from transformer-decoder

        Normally, this function is called in batchify_nll.

        Args:
            encoder_out: (Batch, Length, Dim)
            encoder_out_lens: (Batch,)
            ys_pad: (Batch, Length)
            ys_pad_lens: (Batch,)
        """
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_in_lens = ys_pad_lens + 1

        # 1. Forward decoder
        decoder_out, _ = self.decoder(
            encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
        )  # [batch, seqlen, dim]
        batch_size = decoder_out.size(0)
        decoder_num_class = decoder_out.size(2)
        # nll: negative log-likelihood
        nll = torch.nn.functional.cross_entropy(
            decoder_out.view(-1, decoder_num_class),
            ys_out_pad.view(-1),
            ignore_index=self.ignore_id,
            reduction="none",
        )
        nll = nll.view(batch_size, -1)
        nll = nll.sum(dim=1)
        assert nll.size(0) == batch_size
        return nll

    def batchify_nll(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
        batch_size: int = 100,
    ):
        """Compute negative log likelihood(nll) from transformer-decoder

        To avoid OOM, this fuction seperate the input into batches.
        Then call nll for each batch and combine and return results.
        Args:
            encoder_out: (Batch, Length, Dim)
            encoder_out_lens: (Batch,)
            ys_pad: (Batch, Length)
            ys_pad_lens: (Batch,)
            batch_size: int, samples each batch contain when computing nll,
                        you may change this to avoid OOM or increase
                        GPU memory usage
        """
        total_num = encoder_out.size(0)
        if total_num <= batch_size:
            nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
        else:
            nll = []
            start_idx = 0
            while True:
                end_idx = min(start_idx + batch_size, total_num)
                batch_encoder_out = encoder_out[start_idx:end_idx, :, :]
                batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx]
                batch_ys_pad = ys_pad[start_idx:end_idx, :]
                batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx]
                batch_nll = self.nll(
                    batch_encoder_out,
                    batch_encoder_out_lens,
                    batch_ys_pad,
                    batch_ys_pad_lens,
                )
                nll.append(batch_nll)
                start_idx = end_idx
                if start_idx == total_num:
                    break
            nll = torch.cat(nll)
        assert nll.size(0) == total_num
        return nll

    def _calc_att_loss(
        self,
        asr_encoder_out: torch.Tensor,
        spk_encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
        profile: torch.Tensor,
        profile_lens: torch.Tensor,
        text_id: torch.Tensor,
        text_id_lengths: torch.Tensor,
    ):
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_in_lens = ys_pad_lens + 1

        # 1. Forward decoder
        decoder_out, weights_no_pad, _ = self.decoder(
            asr_encoder_out,
            spk_encoder_out,
            encoder_out_lens,
            ys_in_pad,
            ys_in_lens,
            profile,
            profile_lens,
        )

        spk_num_no_pad = weights_no_pad.size(-1)
        pad = (0, self.max_spk_num - spk_num_no_pad)
        weights = F.pad(weights_no_pad, pad, mode="constant", value=0)

        # pre_id=weights.argmax(-1)
        # pre_text=decoder_out.argmax(-1)
        # id_mask=(pre_id==text_id).to(dtype=text_id.dtype)
        # pre_text_mask=pre_text*id_mask+1-id_mask #相同的地方不变,不同的地方设为1(<unk>)
        # padding_mask= ys_out_pad != self.ignore_id
        # numerator = torch.sum(pre_text_mask.masked_select(padding_mask) == ys_out_pad.masked_select(padding_mask))
        # denominator = torch.sum(padding_mask)
        # sd_acc = float(numerator) / float(denominator)

        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_out_pad)
        loss_spk = self.criterion_spk(torch.log(weights), text_id)

        acc_spk = th_accuracy(
            weights.view(-1, self.max_spk_num),
            text_id,
            ignore_label=self.ignore_id,
        )
        acc_att = th_accuracy(
            decoder_out.view(-1, self.vocab_size),
            ys_out_pad,
            ignore_label=self.ignore_id,
        )

        # Compute cer/wer using attention-decoder
        if self.training or self.error_calculator is None:
            cer_att, wer_att = None, None
        else:
            ys_hat = decoder_out.argmax(dim=-1)
            cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())

        return loss_att, loss_spk, acc_att, acc_spk, cer_att, wer_att

    def _calc_ctc_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        # Calc CTC loss
        loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)

        # Calc CER using CTC
        cer_ctc = None
        if not self.training and self.error_calculator is not None:
            ys_hat = self.ctc.argmax(encoder_out).data
            cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
        return loss_ctc, cer_ctc