File size: 26,043 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import os
import re
import time
import copy
import torch
import codecs
import logging
import tempfile
import requests
import numpy as np
from typing import Dict, Tuple
from contextlib import contextmanager
from distutils.version import LooseVersion

from funasr_detach.register import tables
from funasr_detach.utils import postprocess_utils
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.models.paraformer.model import Paraformer
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.models.paraformer.search import Hypothesis
from funasr_detach.models.paraformer.cif_predictor import mae_loss
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.models.bicif_paraformer.model import BiCifParaformer
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss
from funasr_detach.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank


if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


@tables.register("model_classes", "SeacoParaformer")
class SeacoParaformer(BiCifParaformer, Paraformer):
    """
    Author: Speech Lab of DAMO Academy, Alibaba Group
    SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability
    https://arxiv.org/abs/2308.03266
    """

    def __init__(
        self,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)

        self.inner_dim = kwargs.get("inner_dim", 256)
        self.bias_encoder_type = kwargs.get("bias_encoder_type", "lstm")
        bias_encoder_dropout_rate = kwargs.get("bias_encoder_dropout_rate", 0.0)
        bias_encoder_bid = kwargs.get("bias_encoder_bid", False)
        seaco_lsm_weight = kwargs.get("seaco_lsm_weight", 0.0)
        seaco_length_normalized_loss = kwargs.get("seaco_length_normalized_loss", True)

        # bias encoder
        if self.bias_encoder_type == "lstm":
            self.bias_encoder = torch.nn.LSTM(
                self.inner_dim,
                self.inner_dim,
                2,
                batch_first=True,
                dropout=bias_encoder_dropout_rate,
                bidirectional=bias_encoder_bid,
            )
            if bias_encoder_bid:
                self.lstm_proj = torch.nn.Linear(self.inner_dim * 2, self.inner_dim)
            else:
                self.lstm_proj = None
            self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
        elif self.bias_encoder_type == "mean":
            self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
        else:
            logging.error(
                "Unsupport bias encoder type: {}".format(self.bias_encoder_type)
            )

        # seaco decoder
        seaco_decoder = kwargs.get("seaco_decoder", None)
        if seaco_decoder is not None:
            seaco_decoder_conf = kwargs.get("seaco_decoder_conf")
            seaco_decoder_class = tables.decoder_classes.get(seaco_decoder)
            self.seaco_decoder = seaco_decoder_class(
                vocab_size=self.vocab_size,
                encoder_output_size=self.inner_dim,
                **seaco_decoder_conf,
            )
        self.hotword_output_layer = torch.nn.Linear(self.inner_dim, self.vocab_size)
        self.criterion_seaco = LabelSmoothingLoss(
            size=self.vocab_size,
            padding_idx=self.ignore_id,
            smoothing=seaco_lsm_weight,
            normalize_length=seaco_length_normalized_loss,
        )
        self.train_decoder = kwargs.get("train_decoder", False)
        self.NO_BIAS = kwargs.get("NO_BIAS", 8377)

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
        **kwargs,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
        """Frontend + Encoder + Decoder + Calc loss

        Args:
                speech: (Batch, Length, ...)
                speech_lengths: (Batch, )
                text: (Batch, Length)
                text_lengths: (Batch,)
        """
        assert text_lengths.dim() == 1, text_lengths.shape
        # Check that batch_size is unified
        assert (
            speech.shape[0]
            == speech_lengths.shape[0]
            == text.shape[0]
            == text_lengths.shape[0]
        ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)

        hotword_pad = kwargs.get("hotword_pad")
        hotword_lengths = kwargs.get("hotword_lengths")
        dha_pad = kwargs.get("dha_pad")

        batch_size = speech.shape[0]
        self.step_cur += 1
        # for data-parallel
        text = text[:, : text_lengths.max()]
        speech = speech[:, : speech_lengths.max()]

        # 1. Encoder
        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
        if self.predictor_bias == 1:
            _, ys_pad = add_sos_eos(text, self.sos, self.eos, self.ignore_id)
            ys_lengths = text_lengths + self.predictor_bias

        stats = dict()
        loss_seaco = self._calc_seaco_loss(
            encoder_out,
            encoder_out_lens,
            ys_pad,
            ys_lengths,
            hotword_pad,
            hotword_lengths,
            dha_pad,
        )
        if self.train_decoder:
            loss_att, acc_att = self._calc_att_loss(
                encoder_out, encoder_out_lens, text, text_lengths
            )
            loss = loss_seaco + loss_att
            stats["loss_att"] = torch.clone(loss_att.detach())
            stats["acc_att"] = acc_att
        else:
            loss = loss_seaco
        stats["loss_seaco"] = torch.clone(loss_seaco.detach())
        stats["loss"] = torch.clone(loss.detach())

        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        if self.length_normalized_loss:
            batch_size = (text_lengths + self.predictor_bias).sum().type_as(batch_size)
        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def _merge(self, cif_attended, dec_attended):
        return cif_attended + dec_attended

    def _calc_seaco_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_lengths: torch.Tensor,
        hotword_pad: torch.Tensor,
        hotword_lengths: torch.Tensor,
        dha_pad: torch.Tensor,
    ):
        # predictor forward
        encoder_out_mask = (
            ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
        ).to(encoder_out.device)
        pre_acoustic_embeds, _, _, _ = self.predictor(
            encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
        )
        # decoder forward
        decoder_out, _ = self.decoder(
            encoder_out,
            encoder_out_lens,
            pre_acoustic_embeds,
            ys_lengths,
            return_hidden=True,
        )
        selected = self._hotword_representation(hotword_pad, hotword_lengths)
        contextual_info = (
            selected.squeeze(0)
            .repeat(encoder_out.shape[0], 1, 1)
            .to(encoder_out.device)
        )
        num_hot_word = contextual_info.shape[1]
        _contextual_length = (
            torch.Tensor([num_hot_word])
            .int()
            .repeat(encoder_out.shape[0])
            .to(encoder_out.device)
        )
        # dha core
        cif_attended, _ = self.seaco_decoder(
            contextual_info, _contextual_length, pre_acoustic_embeds, ys_lengths
        )
        dec_attended, _ = self.seaco_decoder(
            contextual_info, _contextual_length, decoder_out, ys_lengths
        )
        merged = self._merge(cif_attended, dec_attended)
        dha_output = self.hotword_output_layer(
            merged[:, :-1]
        )  # remove the last token in loss calculation
        loss_att = self.criterion_seaco(dha_output, dha_pad)
        return loss_att

    def _seaco_decode_with_ASF(
        self,
        encoder_out,
        encoder_out_lens,
        sematic_embeds,
        ys_pad_lens,
        hw_list,
        nfilter=50,
        seaco_weight=1.0,
    ):
        # decoder forward
        decoder_out, decoder_hidden, _ = self.decoder(
            encoder_out,
            encoder_out_lens,
            sematic_embeds,
            ys_pad_lens,
            return_hidden=True,
            return_both=True,
        )
        decoder_pred = torch.log_softmax(decoder_out, dim=-1)
        if hw_list is not None:
            hw_lengths = [len(i) for i in hw_list]
            hw_list_ = [torch.Tensor(i).long() for i in hw_list]
            hw_list_pad = pad_list(hw_list_, 0).to(encoder_out.device)
            selected = self._hotword_representation(
                hw_list_pad, torch.Tensor(hw_lengths).int().to(encoder_out.device)
            )
            contextual_info = (
                selected.squeeze(0)
                .repeat(encoder_out.shape[0], 1, 1)
                .to(encoder_out.device)
            )
            num_hot_word = contextual_info.shape[1]
            _contextual_length = (
                torch.Tensor([num_hot_word])
                .int()
                .repeat(encoder_out.shape[0])
                .to(encoder_out.device)
            )

            # ASF Core
            if nfilter > 0 and nfilter < num_hot_word:
                for dec in self.seaco_decoder.decoders:
                    dec.reserve_attn = True
                # cif_attended, _ = self.decoder2(contextual_info, _contextual_length, sematic_embeds, ys_pad_lens)
                dec_attended, _ = self.seaco_decoder(
                    contextual_info, _contextual_length, decoder_hidden, ys_pad_lens
                )
                # cif_filter = torch.topk(self.decoder2.decoders[-1].attn_mat[0][0].sum(0).sum(0)[:-1], min(nfilter, num_hot_word-1))[1].tolist()
                hotword_scores = (
                    self.seaco_decoder.decoders[-1].attn_mat[0][0].sum(0).sum(0)[:-1]
                )
                # hotword_scores /= torch.sqrt(torch.tensor(hw_lengths)[:-1].float()).to(hotword_scores.device)
                dec_filter = torch.topk(hotword_scores, min(nfilter, num_hot_word - 1))[
                    1
                ].tolist()
                add_filter = dec_filter
                add_filter.append(len(hw_list_pad) - 1)
                # filter hotword embedding
                selected = selected[add_filter]
                # again
                contextual_info = (
                    selected.squeeze(0)
                    .repeat(encoder_out.shape[0], 1, 1)
                    .to(encoder_out.device)
                )
                num_hot_word = contextual_info.shape[1]
                _contextual_length = (
                    torch.Tensor([num_hot_word])
                    .int()
                    .repeat(encoder_out.shape[0])
                    .to(encoder_out.device)
                )
                for dec in self.seaco_decoder.decoders:
                    dec.attn_mat = []
                    dec.reserve_attn = False

            # SeACo Core
            cif_attended, _ = self.seaco_decoder(
                contextual_info, _contextual_length, sematic_embeds, ys_pad_lens
            )
            dec_attended, _ = self.seaco_decoder(
                contextual_info, _contextual_length, decoder_hidden, ys_pad_lens
            )
            merged = self._merge(cif_attended, dec_attended)

            dha_output = self.hotword_output_layer(
                merged
            )  # remove the last token in loss calculation
            dha_pred = torch.log_softmax(dha_output, dim=-1)

            def _merge_res(dec_output, dha_output):
                lmbd = torch.Tensor([seaco_weight] * dha_output.shape[0])
                dha_ids = dha_output.max(-1)[-1]  # [0]
                dha_mask = (dha_ids == 8377).int().unsqueeze(-1)
                a = (1 - lmbd) / lmbd
                b = 1 / lmbd
                a, b = a.to(dec_output.device), b.to(dec_output.device)
                dha_mask = (dha_mask + a.reshape(-1, 1, 1)) / b.reshape(-1, 1, 1)
                # logits = dec_output * dha_mask + dha_output[:,:,:-1] * (1-dha_mask)
                logits = dec_output * dha_mask + dha_output[:, :, :] * (1 - dha_mask)
                return logits

            merged_pred = _merge_res(decoder_pred, dha_pred)
            # import pdb; pdb.set_trace()
            return merged_pred
        else:
            return decoder_pred

    def _hotword_representation(self, hotword_pad, hotword_lengths):
        if self.bias_encoder_type != "lstm":
            logging.error("Unsupported bias encoder type")
        hw_embed = self.decoder.embed(hotword_pad)
        hw_embed, (_, _) = self.bias_encoder(hw_embed)
        if self.lstm_proj is not None:
            hw_embed = self.lstm_proj(hw_embed)
        _ind = np.arange(0, hw_embed.shape[0]).tolist()
        selected = hw_embed[
            _ind, [i - 1 for i in hotword_lengths.detach().cpu().tolist()]
        ]
        return selected

    """
     def calc_predictor(self, encoder_out, encoder_out_lens):
        encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
            encoder_out.device)
        pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out,
                                                                                                          None,
                                                                                                          encoder_out_mask,
                                                                                                          ignore_id=self.ignore_id)
        return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index


    def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
        encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
            encoder_out.device)
        ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out,
                                                                                            encoder_out_mask,
                                                                                            token_num)
        return ds_alphas, ds_cif_peak, us_alphas, us_peaks
    """

    def inference(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        **kwargs,
    ):

        # init beamsearch
        is_use_ctc = (
            kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
        )
        is_use_lm = (
            kwargs.get("lm_weight", 0.0) > 0.00001
            and kwargs.get("lm_file", None) is not None
        )
        if self.beam_search is None and (is_use_lm or is_use_ctc):
            logging.info("enable beam_search")
            self.init_beam_search(**kwargs)
            self.nbest = kwargs.get("nbest", 1)

        meta_data = {}

        # extract fbank feats
        time1 = time.perf_counter()
        audio_sample_list = load_audio_text_image_video(
            data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000)
        )
        time2 = time.perf_counter()
        meta_data["load_data"] = f"{time2 - time1:0.3f}"
        speech, speech_lengths = extract_fbank(
            audio_sample_list,
            data_type=kwargs.get("data_type", "sound"),
            frontend=frontend,
        )
        time3 = time.perf_counter()
        meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
        meta_data["batch_data_time"] = (
            speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
        )

        speech = speech.to(device=kwargs["device"])
        speech_lengths = speech_lengths.to(device=kwargs["device"])

        # hotword
        self.hotword_list = self.generate_hotwords_list(
            kwargs.get("hotword", None), tokenizer=tokenizer, frontend=frontend
        )

        # Encoder
        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
        if isinstance(encoder_out, tuple):
            encoder_out = encoder_out[0]

        # predictor
        predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
        pre_acoustic_embeds, pre_token_length, _, _ = (
            predictor_outs[0],
            predictor_outs[1],
            predictor_outs[2],
            predictor_outs[3],
        )
        pre_token_length = pre_token_length.round().long()
        if torch.max(pre_token_length) < 1:
            return []

        decoder_out = self._seaco_decode_with_ASF(
            encoder_out,
            encoder_out_lens,
            pre_acoustic_embeds,
            pre_token_length,
            hw_list=self.hotword_list,
        )
        # decoder_out, _ = decoder_outs[0], decoder_outs[1]
        _, _, us_alphas, us_peaks = self.calc_predictor_timestamp(
            encoder_out, encoder_out_lens, pre_token_length
        )

        results = []
        b, n, d = decoder_out.size()
        for i in range(b):
            x = encoder_out[i, : encoder_out_lens[i], :]
            am_scores = decoder_out[i, : pre_token_length[i], :]
            if self.beam_search is not None:
                nbest_hyps = self.beam_search(
                    x=x,
                    am_scores=am_scores,
                    maxlenratio=kwargs.get("maxlenratio", 0.0),
                    minlenratio=kwargs.get("minlenratio", 0.0),
                )

                nbest_hyps = nbest_hyps[: self.nbest]
            else:

                yseq = am_scores.argmax(dim=-1)
                score = am_scores.max(dim=-1)[0]
                score = torch.sum(score, dim=-1)
                # pad with mask tokens to ensure compatibility with sos/eos tokens
                yseq = torch.tensor(
                    [self.sos] + yseq.tolist() + [self.eos], device=yseq.device
                )
                nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
            for nbest_idx, hyp in enumerate(nbest_hyps):
                ibest_writer = None
                if kwargs.get("output_dir") is not None:
                    if not hasattr(self, "writer"):
                        self.writer = DatadirWriter(kwargs.get("output_dir"))
                    ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]

                # remove sos/eos and get results
                last_pos = -1
                if isinstance(hyp.yseq, list):
                    token_int = hyp.yseq[1:last_pos]
                else:
                    token_int = hyp.yseq[1:last_pos].tolist()

                # remove blank symbol id, which is assumed to be 0
                token_int = list(
                    filter(
                        lambda x: x != self.eos
                        and x != self.sos
                        and x != self.blank_id,
                        token_int,
                    )
                )

                if tokenizer is not None:
                    # Change integer-ids to tokens
                    token = tokenizer.ids2tokens(token_int)
                    text = tokenizer.tokens2text(token)

                    _, timestamp = ts_prediction_lfr6_standard(
                        us_alphas[i][: encoder_out_lens[i] * 3],
                        us_peaks[i][: encoder_out_lens[i] * 3],
                        copy.copy(token),
                        vad_offset=kwargs.get("begin_time", 0),
                    )

                    text_postprocessed, time_stamp_postprocessed, word_lists = (
                        postprocess_utils.sentence_postprocess(token, timestamp)
                    )

                    result_i = {
                        "key": key[i],
                        "text": text_postprocessed,
                        "timestamp": time_stamp_postprocessed,
                    }

                    if ibest_writer is not None:
                        ibest_writer["token"][key[i]] = " ".join(token)
                        ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed
                        ibest_writer["text"][key[i]] = text_postprocessed
                else:
                    result_i = {"key": key[i], "token_int": token_int}
                results.append(result_i)

        return results, meta_data

    def generate_hotwords_list(
        self, hotword_list_or_file, tokenizer=None, frontend=None
    ):
        def load_seg_dict(seg_dict_file):
            seg_dict = {}
            assert isinstance(seg_dict_file, str)
            with open(seg_dict_file, "r", encoding="utf8") as f:
                lines = f.readlines()
                for line in lines:
                    s = line.strip().split()
                    key = s[0]
                    value = s[1:]
                    seg_dict[key] = " ".join(value)
            return seg_dict

        def seg_tokenize(txt, seg_dict):
            pattern = re.compile(r"^[\u4E00-\u9FA50-9]+$")
            out_txt = ""
            for word in txt:
                word = word.lower()
                if word in seg_dict:
                    out_txt += seg_dict[word] + " "
                else:
                    if pattern.match(word):
                        for char in word:
                            if char in seg_dict:
                                out_txt += seg_dict[char] + " "
                            else:
                                out_txt += "<unk>" + " "
                    else:
                        out_txt += "<unk>" + " "
            return out_txt.strip().split()

        seg_dict = None
        if frontend.cmvn_file is not None:
            model_dir = os.path.dirname(frontend.cmvn_file)
            seg_dict_file = os.path.join(model_dir, "seg_dict")
            if os.path.exists(seg_dict_file):
                seg_dict = load_seg_dict(seg_dict_file)
            else:
                seg_dict = None
        # for None
        if hotword_list_or_file is None:
            hotword_list = None
        # for local txt inputs
        elif os.path.exists(hotword_list_or_file) and hotword_list_or_file.endswith(
            ".txt"
        ):
            logging.info("Attempting to parse hotwords from local txt...")
            hotword_list = []
            hotword_str_list = []
            with codecs.open(hotword_list_or_file, "r") as fin:
                for line in fin.readlines():
                    hw = line.strip()
                    hw_list = hw.split()
                    if seg_dict is not None:
                        hw_list = seg_tokenize(hw_list, seg_dict)
                    hotword_str_list.append(hw)
                    hotword_list.append(tokenizer.tokens2ids(hw_list))
                hotword_list.append([self.sos])
                hotword_str_list.append("<s>")
            logging.info(
                "Initialized hotword list from file: {}, hotword list: {}.".format(
                    hotword_list_or_file, hotword_str_list
                )
            )
        # for url, download and generate txt
        elif hotword_list_or_file.startswith("http"):
            logging.info("Attempting to parse hotwords from url...")
            work_dir = tempfile.TemporaryDirectory().name
            if not os.path.exists(work_dir):
                os.makedirs(work_dir)
            text_file_path = os.path.join(
                work_dir, os.path.basename(hotword_list_or_file)
            )
            local_file = requests.get(hotword_list_or_file)
            open(text_file_path, "wb").write(local_file.content)
            hotword_list_or_file = text_file_path
            hotword_list = []
            hotword_str_list = []
            with codecs.open(hotword_list_or_file, "r") as fin:
                for line in fin.readlines():
                    hw = line.strip()
                    hw_list = hw.split()
                    if seg_dict is not None:
                        hw_list = seg_tokenize(hw_list, seg_dict)
                    hotword_str_list.append(hw)
                    hotword_list.append(tokenizer.tokens2ids(hw_list))
                hotword_list.append([self.sos])
                hotword_str_list.append("<s>")
            logging.info(
                "Initialized hotword list from file: {}, hotword list: {}.".format(
                    hotword_list_or_file, hotword_str_list
                )
            )
        # for text str input
        elif not hotword_list_or_file.endswith(".txt"):
            logging.info("Attempting to parse hotwords as str...")
            hotword_list = []
            hotword_str_list = []
            for hw in hotword_list_or_file.strip().split():
                hotword_str_list.append(hw)
                hw_list = hw.strip().split()
                if seg_dict is not None:
                    hw_list = seg_tokenize(hw_list, seg_dict)
                hotword_list.append(tokenizer.tokens2ids(hw_list))
            hotword_list.append([self.sos])
            hotword_str_list.append("<s>")
            logging.info("Hotword list: {}.".format(hotword_str_list))
        else:
            hotword_list = None
        return hotword_list