File size: 24,535 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
#!/usr/bin/env python3
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)
import logging
import random
from contextlib import contextmanager
from distutils.version import LooseVersion
from itertools import permutations
from typing import Dict
from typing import Optional
from typing import Tuple, List

import numpy as np
import torch
from torch.nn import functional as F

from funasr_detach.models.transformer.utils.nets_utils import to_device
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.decoder.abs_decoder import AbsDecoder
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
from funasr_detach.frontends.abs_frontend import AbsFrontend
from funasr_detach.models.specaug.abs_specaug import AbsSpecAug
from funasr_detach.models.specaug.abs_profileaug import AbsProfileAug
from funasr_detach.layers.abs_normalize import AbsNormalize
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.models.base_model import FunASRModel
from funasr_detach.losses.label_smoothing_loss import (
    LabelSmoothingLoss,
    SequenceBinaryCrossEntropy,
)
from funasr_detach.utils.misc import int2vec
from funasr_detach.utils.hinter import hint_once

if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


class DiarSondModel(FunASRModel):
    """Speaker overlap-aware neural diarization model
    reference: https://arxiv.org/abs/2211.10243
    """

    def __init__(
        self,
        vocab_size: int,
        frontend: Optional[AbsFrontend],
        specaug: Optional[AbsSpecAug],
        profileaug: Optional[AbsProfileAug],
        normalize: Optional[AbsNormalize],
        encoder: torch.nn.Module,
        speaker_encoder: Optional[torch.nn.Module],
        ci_scorer: torch.nn.Module,
        cd_scorer: Optional[torch.nn.Module],
        decoder: torch.nn.Module,
        token_list: list,
        lsm_weight: float = 0.1,
        length_normalized_loss: bool = False,
        max_spk_num: int = 16,
        label_aggregator: Optional[torch.nn.Module] = None,
        normalize_speech_speaker: bool = False,
        ignore_id: int = -1,
        speaker_discrimination_loss_weight: float = 1.0,
        inter_score_loss_weight: float = 0.0,
        inputs_type: str = "raw",
        model_regularizer_weight: float = 0.0,
        freeze_encoder: bool = False,
        onfly_shuffle_speaker: bool = True,
    ):

        super().__init__()

        self.encoder = encoder
        self.speaker_encoder = speaker_encoder
        self.ci_scorer = ci_scorer
        self.cd_scorer = cd_scorer
        self.normalize = normalize
        self.frontend = frontend
        self.specaug = specaug
        self.profileaug = profileaug
        self.label_aggregator = label_aggregator
        self.decoder = decoder
        self.token_list = token_list
        self.max_spk_num = max_spk_num
        self.normalize_speech_speaker = normalize_speech_speaker
        self.ignore_id = ignore_id
        self.model_regularizer_weight = model_regularizer_weight
        self.freeze_encoder = freeze_encoder
        self.onfly_shuffle_speaker = onfly_shuffle_speaker
        self.criterion_diar = LabelSmoothingLoss(
            size=vocab_size,
            padding_idx=ignore_id,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )
        self.criterion_bce = SequenceBinaryCrossEntropy(
            normalize_length=length_normalized_loss
        )
        self.pse_embedding = self.generate_pse_embedding()
        self.power_weight = torch.from_numpy(
            2 ** np.arange(max_spk_num)[np.newaxis, np.newaxis, :]
        ).float()
        self.int_token_arr = torch.from_numpy(
            np.array(self.token_list).astype(int)[np.newaxis, np.newaxis, :]
        ).int()
        self.speaker_discrimination_loss_weight = speaker_discrimination_loss_weight
        self.inter_score_loss_weight = inter_score_loss_weight
        self.forward_steps = 0
        self.inputs_type = inputs_type
        self.to_regularize_parameters = None

    def get_regularize_parameters(self):
        to_regularize_parameters, normal_parameters = [], []
        for name, param in self.named_parameters():
            if (
                "encoder" in name
                and "weight" in name
                and "bn" not in name
                and (
                    "conv2" in name
                    or "conv1" in name
                    or "conv_sc" in name
                    or "dense" in name
                )
            ):
                to_regularize_parameters.append((name, param))
            else:
                normal_parameters.append((name, param))
        self.to_regularize_parameters = to_regularize_parameters
        return to_regularize_parameters, normal_parameters

    def generate_pse_embedding(self):
        embedding = np.zeros((len(self.token_list), self.max_spk_num), dtype=np.float32)
        for idx, pse_label in enumerate(self.token_list):
            emb = int2vec(int(pse_label), vec_dim=self.max_spk_num, dtype=np.float32)
            embedding[idx] = emb
        return torch.from_numpy(embedding)

    def rand_permute_speaker(self, raw_profile, raw_binary_labels):
        """
        raw_profile: B, N, D
        raw_binary_labels: B, T, N
        """
        assert (
            raw_profile.shape[1] == raw_binary_labels.shape[2]
        ), "Num profile: {}, Num label: {}".format(
            raw_profile.shape[1], raw_binary_labels.shape[-1]
        )
        profile = torch.clone(raw_profile)
        binary_labels = torch.clone(raw_binary_labels)
        bsz, num_spk = profile.shape[0], profile.shape[1]
        for i in range(bsz):
            idx = list(range(num_spk))
            random.shuffle(idx)
            profile[i] = profile[i][idx, :]
            binary_labels[i] = binary_labels[i][:, idx]

        return profile, binary_labels

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor = None,
        profile: torch.Tensor = None,
        profile_lengths: torch.Tensor = None,
        binary_labels: torch.Tensor = None,
        binary_labels_lengths: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
        """Frontend + Encoder + Speaker Encoder + CI Scorer + CD Scorer + Decoder + Calc loss

        Args:
            speech: (Batch, samples) or (Batch, frames, input_size)
            speech_lengths: (Batch,) default None for chunk interator,
                                     because the chunk-iterator does not
                                     have the speech_lengths returned.
                                     see in
                                     espnet2/iterators/chunk_iter_factory.py
            profile: (Batch, N_spk, dim)
            profile_lengths: (Batch,)
            binary_labels: (Batch, frames, max_spk_num)
            binary_labels_lengths: (Batch,)
        """
        assert speech.shape[0] <= binary_labels.shape[0], (
            speech.shape,
            binary_labels.shape,
        )
        batch_size = speech.shape[0]
        if self.freeze_encoder:
            hint_once("Freeze encoder", "freeze_encoder", rank=0)
            self.encoder.eval()
        self.forward_steps = self.forward_steps + 1
        if self.pse_embedding.device != speech.device:
            self.pse_embedding = self.pse_embedding.to(speech.device)
            self.power_weight = self.power_weight.to(speech.device)
            self.int_token_arr = self.int_token_arr.to(speech.device)

        if self.onfly_shuffle_speaker:
            hint_once(
                "On-the-fly shuffle speaker permutation.",
                "onfly_shuffle_speaker",
                rank=0,
            )
            profile, binary_labels = self.rand_permute_speaker(profile, binary_labels)

        # 0a. Aggregate time-domain labels to match forward outputs
        if self.label_aggregator is not None:
            binary_labels, binary_labels_lengths = self.label_aggregator(
                binary_labels, binary_labels_lengths
            )
        # 0b. augment profiles
        if self.profileaug is not None and self.training:
            speech, profile, binary_labels = self.profileaug(
                speech,
                speech_lengths,
                profile,
                profile_lengths,
                binary_labels,
                binary_labels_lengths,
            )

        # 1. Calculate power-set encoding (PSE) labels
        pad_bin_labels = F.pad(
            binary_labels,
            (0, self.max_spk_num - binary_labels.shape[2]),
            "constant",
            0.0,
        )
        raw_pse_labels = torch.sum(
            pad_bin_labels * self.power_weight, dim=2, keepdim=True
        )
        pse_labels = torch.argmax(
            (raw_pse_labels.int() == self.int_token_arr).float(), dim=2
        )

        # 2. Network forward
        pred, inter_outputs = self.prediction_forward(
            speech, speech_lengths, profile, profile_lengths, return_inter_outputs=True
        )
        (speech, speech_lengths), (profile, profile_lengths), (ci_score, cd_score) = (
            inter_outputs
        )

        # If encoder uses conv* as input_layer (i.e., subsampling),
        # the sequence length of 'pred' might be slightly less than the
        # length of 'spk_labels'. Here we force them to be equal.
        length_diff_tolerance = 2
        length_diff = abs(pse_labels.shape[1] - pred.shape[1])
        if length_diff <= length_diff_tolerance:
            min_len = min(pred.shape[1], pse_labels.shape[1])
            pse_labels = pse_labels[:, :min_len]
            pred = pred[:, :min_len]
            cd_score = cd_score[:, :min_len]
            ci_score = ci_score[:, :min_len]

        loss_diar = self.classification_loss(pred, pse_labels, binary_labels_lengths)
        loss_spk_dis = self.speaker_discrimination_loss(profile, profile_lengths)
        loss_inter_ci, loss_inter_cd = self.internal_score_loss(
            cd_score, ci_score, pse_labels, binary_labels_lengths
        )
        regularizer_loss = None
        if (
            self.model_regularizer_weight > 0
            and self.to_regularize_parameters is not None
        ):
            regularizer_loss = self.calculate_regularizer_loss()
        label_mask = make_pad_mask(
            binary_labels_lengths, maxlen=pse_labels.shape[1]
        ).to(pse_labels.device)
        loss = (
            loss_diar
            + self.speaker_discrimination_loss_weight * loss_spk_dis
            + self.inter_score_loss_weight * (loss_inter_ci + loss_inter_cd)
        )
        # if regularizer_loss is not None:
        #     loss = loss + regularizer_loss * self.model_regularizer_weight

        (
            correct,
            num_frames,
            speech_scored,
            speech_miss,
            speech_falarm,
            speaker_scored,
            speaker_miss,
            speaker_falarm,
            speaker_error,
        ) = self.calc_diarization_error(
            pred=F.embedding(pred.argmax(dim=2) * (~label_mask), self.pse_embedding),
            label=F.embedding(pse_labels * (~label_mask), self.pse_embedding),
            length=binary_labels_lengths,
        )

        if speech_scored > 0 and num_frames > 0:
            sad_mr, sad_fr, mi, fa, cf, acc, der = (
                speech_miss / speech_scored,
                speech_falarm / speech_scored,
                speaker_miss / speaker_scored,
                speaker_falarm / speaker_scored,
                speaker_error / speaker_scored,
                correct / num_frames,
                (speaker_miss + speaker_falarm + speaker_error) / speaker_scored,
            )
        else:
            sad_mr, sad_fr, mi, fa, cf, acc, der = 0, 0, 0, 0, 0, 0, 0

        stats = dict(
            loss=loss.detach(),
            loss_diar=loss_diar.detach() if loss_diar is not None else None,
            loss_spk_dis=loss_spk_dis.detach() if loss_spk_dis is not None else None,
            loss_inter_ci=loss_inter_ci.detach() if loss_inter_ci is not None else None,
            loss_inter_cd=loss_inter_cd.detach() if loss_inter_cd is not None else None,
            regularizer_loss=(
                regularizer_loss.detach() if regularizer_loss is not None else None
            ),
            sad_mr=sad_mr,
            sad_fr=sad_fr,
            mi=mi,
            fa=fa,
            cf=cf,
            acc=acc,
            der=der,
            forward_steps=self.forward_steps,
        )

        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def calculate_regularizer_loss(self):
        regularizer_loss = 0.0
        for name, param in self.to_regularize_parameters:
            regularizer_loss = regularizer_loss + torch.norm(param, p=2)
        return regularizer_loss

    def classification_loss(
        self,
        predictions: torch.Tensor,
        labels: torch.Tensor,
        prediction_lengths: torch.Tensor,
    ) -> torch.Tensor:
        mask = make_pad_mask(prediction_lengths, maxlen=labels.shape[1])
        pad_labels = labels.masked_fill(
            mask.to(predictions.device), value=self.ignore_id
        )
        loss = self.criterion_diar(predictions.contiguous(), pad_labels)

        return loss

    def speaker_discrimination_loss(
        self, profile: torch.Tensor, profile_lengths: torch.Tensor
    ) -> torch.Tensor:
        profile_mask = (
            torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0
        ).float()  # (B, N, 1)
        mask = torch.matmul(profile_mask, profile_mask.transpose(1, 2))  # (B, N, N)
        mask = mask * (1.0 - torch.eye(self.max_spk_num).unsqueeze(0).to(mask))

        eps = 1e-12
        coding_norm = (
            torch.linalg.norm(
                profile * profile_mask + (1 - profile_mask) * eps, dim=2, keepdim=True
            )
            * profile_mask
        )
        # profile: Batch, N, dim
        cos_theta = (
            F.cosine_similarity(
                profile.unsqueeze(2), profile.unsqueeze(1), dim=-1, eps=eps
            )
            * mask
        )
        cos_theta = torch.clip(cos_theta, -1 + eps, 1 - eps)
        loss = (F.relu(mask * coding_norm * (cos_theta - 0.0))).sum() / mask.sum()

        return loss

    def calculate_multi_labels(self, pse_labels, pse_labels_lengths):
        mask = make_pad_mask(pse_labels_lengths, maxlen=pse_labels.shape[1])
        padding_labels = pse_labels.masked_fill(mask.to(pse_labels.device), value=0).to(
            pse_labels
        )
        multi_labels = F.embedding(padding_labels, self.pse_embedding)

        return multi_labels

    def internal_score_loss(
        self,
        cd_score: torch.Tensor,
        ci_score: torch.Tensor,
        pse_labels: torch.Tensor,
        pse_labels_lengths: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        multi_labels = self.calculate_multi_labels(pse_labels, pse_labels_lengths)
        ci_loss = self.criterion_bce(ci_score, multi_labels, pse_labels_lengths)
        cd_loss = self.criterion_bce(cd_score, multi_labels, pse_labels_lengths)
        return ci_loss, cd_loss

    def collect_feats(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        profile: torch.Tensor = None,
        profile_lengths: torch.Tensor = None,
        binary_labels: torch.Tensor = None,
        binary_labels_lengths: torch.Tensor = None,
    ) -> Dict[str, torch.Tensor]:
        feats, feats_lengths = self._extract_feats(speech, speech_lengths)
        return {"feats": feats, "feats_lengths": feats_lengths}

    def encode_speaker(
        self,
        profile: torch.Tensor,
        profile_lengths: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        with autocast(False):
            if profile.shape[1] < self.max_spk_num:
                profile = F.pad(
                    profile,
                    [0, 0, 0, self.max_spk_num - profile.shape[1], 0, 0],
                    "constant",
                    0.0,
                )
            profile_mask = (
                torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0
            ).float()
            profile = F.normalize(profile, dim=2)
            if self.speaker_encoder is not None:
                profile = self.speaker_encoder(profile, profile_lengths)[0]
                return profile * profile_mask, profile_lengths
            else:
                return profile, profile_lengths

    def encode_speech(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.encoder is not None and self.inputs_type == "raw":
            speech, speech_lengths = self.encode(speech, speech_lengths)
            speech_mask = ~make_pad_mask(speech_lengths, maxlen=speech.shape[1])
            speech_mask = speech_mask.to(speech.device).unsqueeze(-1).float()
            return speech * speech_mask, speech_lengths
        else:
            return speech, speech_lengths

    @staticmethod
    def concate_speech_ivc(speech: torch.Tensor, ivc: torch.Tensor) -> torch.Tensor:
        nn, tt = ivc.shape[1], speech.shape[1]
        speech = speech.unsqueeze(dim=1)  # B x 1 x T x D
        speech = speech.expand(-1, nn, -1, -1)  # B x N x T x D
        ivc = ivc.unsqueeze(dim=2)  # B x N x 1 x D
        ivc = ivc.expand(-1, -1, tt, -1)  # B x N x T x D
        sd_in = torch.cat([speech, ivc], dim=3)  # B x N x T x 2D
        return sd_in

    def calc_similarity(
        self,
        speech_encoder_outputs: torch.Tensor,
        speaker_encoder_outputs: torch.Tensor,
        seq_len: torch.Tensor = None,
        spk_len: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        bb, tt = speech_encoder_outputs.shape[0], speech_encoder_outputs.shape[1]
        d_sph, d_spk = speech_encoder_outputs.shape[2], speaker_encoder_outputs.shape[2]
        if self.normalize_speech_speaker:
            speech_encoder_outputs = F.normalize(speech_encoder_outputs, dim=2)
            speaker_encoder_outputs = F.normalize(speaker_encoder_outputs, dim=2)
        ge_in = self.concate_speech_ivc(speech_encoder_outputs, speaker_encoder_outputs)
        ge_in = torch.reshape(ge_in, [bb * self.max_spk_num, tt, d_sph + d_spk])
        ge_len = seq_len.unsqueeze(1).expand(-1, self.max_spk_num)
        ge_len = torch.reshape(ge_len, [bb * self.max_spk_num])
        cd_simi = self.cd_scorer(ge_in, ge_len)[0]
        cd_simi = torch.reshape(cd_simi, [bb, self.max_spk_num, tt, 1])
        cd_simi = cd_simi.squeeze(dim=3).permute([0, 2, 1])

        if isinstance(self.ci_scorer, AbsEncoder):
            ci_simi = self.ci_scorer(ge_in, ge_len)[0]
            ci_simi = torch.reshape(ci_simi, [bb, self.max_spk_num, tt]).permute(
                [0, 2, 1]
            )
        else:
            ci_simi = self.ci_scorer(speech_encoder_outputs, speaker_encoder_outputs)

        return ci_simi, cd_simi

    def post_net_forward(self, simi, seq_len):
        logits = self.decoder(simi, seq_len)[0]

        return logits

    def prediction_forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        profile: torch.Tensor,
        profile_lengths: torch.Tensor,
        return_inter_outputs: bool = False,
    ) -> [torch.Tensor, Optional[list]]:
        # speech encoding
        speech, speech_lengths = self.encode_speech(speech, speech_lengths)
        # speaker encoding
        profile, profile_lengths = self.encode_speaker(profile, profile_lengths)
        # calculating similarity
        ci_simi, cd_simi = self.calc_similarity(
            speech, profile, speech_lengths, profile_lengths
        )
        similarity = torch.cat([cd_simi, ci_simi], dim=2)
        # post net forward
        logits = self.post_net_forward(similarity, speech_lengths)

        if return_inter_outputs:
            return logits, [
                (speech, speech_lengths),
                (profile, profile_lengths),
                (ci_simi, cd_simi),
            ]
        return logits

    def encode(
        self, speech: torch.Tensor, speech_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Frontend + Encoder

        Args:
            speech: (Batch, Length, ...)
            speech_lengths: (Batch,)
        """
        with autocast(False):
            # 1. Extract feats
            feats, feats_lengths = self._extract_feats(speech, speech_lengths)

            # 2. Data augmentation
            if self.specaug is not None and self.training:
                feats, feats_lengths = self.specaug(feats, feats_lengths)

            # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
            if self.normalize is not None:
                feats, feats_lengths = self.normalize(feats, feats_lengths)

            # 4. Forward encoder
            # feats: (Batch, Length, Dim)
            # -> encoder_out: (Batch, Length2, Dim)
            encoder_outputs = self.encoder(feats, feats_lengths)
            encoder_out, encoder_out_lens = encoder_outputs[:2]

        assert encoder_out.size(0) == speech.size(0), (
            encoder_out.size(),
            speech.size(0),
        )
        assert encoder_out.size(1) <= encoder_out_lens.max(), (
            encoder_out.size(),
            encoder_out_lens.max(),
        )

        return encoder_out, encoder_out_lens

    def _extract_feats(
        self, speech: torch.Tensor, speech_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = speech.shape[0]
        speech_lengths = (
            speech_lengths
            if speech_lengths is not None
            else torch.ones(batch_size).int() * speech.shape[1]
        )

        assert speech_lengths.dim() == 1, speech_lengths.shape

        # for data-parallel
        speech = speech[:, : speech_lengths.max()]

        if self.frontend is not None:
            # Frontend
            #  e.g. STFT and Feature extract
            #       data_loader may send time-domain signal in this case
            # speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
            feats, feats_lengths = self.frontend(speech, speech_lengths)
        else:
            # No frontend and no feature extract
            feats, feats_lengths = speech, speech_lengths
        return feats, feats_lengths

    @staticmethod
    def calc_diarization_error(pred, label, length):
        # Note (jiatong): Credit to https://github.com/hitachi-speech/EEND

        (batch_size, max_len, num_output) = label.size()
        # mask the padding part
        mask = ~make_pad_mask(length, maxlen=label.shape[1]).unsqueeze(-1).numpy()

        # pred and label have the shape (batch_size, max_len, num_output)
        label_np = label.data.cpu().numpy().astype(int)
        pred_np = (pred.data.cpu().numpy() > 0).astype(int)
        label_np = label_np * mask
        pred_np = pred_np * mask
        length = length.data.cpu().numpy()

        # compute speech activity detection error
        n_ref = np.sum(label_np, axis=2)
        n_sys = np.sum(pred_np, axis=2)
        speech_scored = float(np.sum(n_ref > 0))
        speech_miss = float(np.sum(np.logical_and(n_ref > 0, n_sys == 0)))
        speech_falarm = float(np.sum(np.logical_and(n_ref == 0, n_sys > 0)))

        # compute speaker diarization error
        speaker_scored = float(np.sum(n_ref))
        speaker_miss = float(np.sum(np.maximum(n_ref - n_sys, 0)))
        speaker_falarm = float(np.sum(np.maximum(n_sys - n_ref, 0)))
        n_map = np.sum(np.logical_and(label_np == 1, pred_np == 1), axis=2)
        speaker_error = float(np.sum(np.minimum(n_ref, n_sys) - n_map))
        correct = float(1.0 * np.sum((label_np == pred_np) * mask) / num_output)
        num_frames = np.sum(length)
        return (
            correct,
            num_frames,
            speech_scored,
            speech_miss,
            speech_falarm,
            speaker_scored,
            speaker_miss,
            speaker_falarm,
            speaker_error,
        )