File size: 11,510 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
import math
from funasr_detach.models.transformer.utils.repeat import repeat


class EncoderLayer(nn.Module):
    def __init__(
        self,
        input_units,
        num_units,
        kernel_size=3,
        activation="tanh",
        stride=1,
        include_batch_norm=False,
        residual=False,
    ):
        super().__init__()
        left_padding = math.ceil((kernel_size - stride) / 2)
        right_padding = kernel_size - stride - left_padding
        self.conv_padding = nn.ConstantPad1d((left_padding, right_padding), 0.0)
        self.conv1d = nn.Conv1d(
            input_units,
            num_units,
            kernel_size,
            stride,
        )
        self.activation = self.get_activation(activation)
        if include_batch_norm:
            self.bn = nn.BatchNorm1d(num_units, momentum=0.99, eps=1e-3)
        self.residual = residual
        self.include_batch_norm = include_batch_norm
        self.input_units = input_units
        self.num_units = num_units
        self.stride = stride

    @staticmethod
    def get_activation(activation):
        if activation == "tanh":
            return nn.Tanh()
        else:
            return nn.ReLU()

    def forward(self, xs_pad, ilens=None):
        outputs = self.conv1d(self.conv_padding(xs_pad))
        if self.residual and self.stride == 1 and self.input_units == self.num_units:
            outputs = outputs + xs_pad

        if self.include_batch_norm:
            outputs = self.bn(outputs)

        # add parenthesis for repeat module
        return self.activation(outputs), ilens


class ConvEncoder(AbsEncoder):
    """
    Author: Speech Lab of DAMO Academy, Alibaba Group
    Convolution encoder in OpenNMT framework
    """

    def __init__(
        self,
        num_layers,
        input_units,
        num_units,
        kernel_size=3,
        dropout_rate=0.3,
        position_encoder=None,
        activation="tanh",
        auxiliary_states=True,
        out_units=None,
        out_norm=False,
        out_residual=False,
        include_batchnorm=False,
        regularization_weight=0.0,
        stride=1,
        tf2torch_tensor_name_prefix_torch: str = "speaker_encoder",
        tf2torch_tensor_name_prefix_tf: str = "EAND/speaker_encoder",
    ):
        super().__init__()
        self._output_size = num_units

        self.num_layers = num_layers
        self.input_units = input_units
        self.num_units = num_units
        self.kernel_size = kernel_size
        self.dropout_rate = dropout_rate
        self.position_encoder = position_encoder
        self.out_units = out_units
        self.auxiliary_states = auxiliary_states
        self.out_norm = out_norm
        self.activation = activation
        self.out_residual = out_residual
        self.include_batch_norm = include_batchnorm
        self.regularization_weight = regularization_weight
        self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
        self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
        if isinstance(stride, int):
            self.stride = [stride] * self.num_layers
        else:
            self.stride = stride
        self.downsample_rate = 1
        for s in self.stride:
            self.downsample_rate *= s

        self.dropout = nn.Dropout(dropout_rate)
        self.cnn_a = repeat(
            self.num_layers,
            lambda lnum: EncoderLayer(
                input_units if lnum == 0 else num_units,
                num_units,
                kernel_size,
                activation,
                self.stride[lnum],
                include_batchnorm,
                residual=True if lnum > 0 else False,
            ),
        )

        if self.out_units is not None:
            left_padding = math.ceil((kernel_size - stride) / 2)
            right_padding = kernel_size - stride - left_padding
            self.out_padding = nn.ConstantPad1d((left_padding, right_padding), 0.0)
            self.conv_out = nn.Conv1d(
                num_units,
                out_units,
                kernel_size,
            )

        if self.out_norm:
            self.after_norm = LayerNorm(out_units)

    def output_size(self) -> int:
        return self.num_units

    def forward(
        self,
        xs_pad: torch.Tensor,
        ilens: torch.Tensor,
        prev_states: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:

        inputs = xs_pad
        if self.position_encoder is not None:
            inputs = self.position_encoder(inputs)

        if self.dropout_rate > 0:
            inputs = self.dropout(inputs)

        outputs, _ = self.cnn_a(inputs.transpose(1, 2), ilens)

        if self.out_units is not None:
            outputs = self.conv_out(self.out_padding(outputs))

        outputs = outputs.transpose(1, 2)
        if self.out_norm:
            outputs = self.after_norm(outputs)

        if self.out_residual:
            outputs = outputs + inputs

        return outputs, ilens, None

    def gen_tf2torch_map_dict(self):
        tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
        tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
        map_dict_local = {
            # torch: conv1d.weight in "out_channel in_channel kernel_size"
            # tf   : conv1d.weight in "kernel_size in_channel out_channel"
            # torch: linear.weight in "out_channel in_channel"
            # tf   :  dense.weight in "in_channel out_channel"
            "{}.cnn_a.0.conv1d.weight".format(tensor_name_prefix_torch): {
                "name": "{}/cnn_a/conv1d/kernel".format(tensor_name_prefix_tf),
                "squeeze": None,
                "transpose": (2, 1, 0),
            },
            "{}.cnn_a.0.conv1d.bias".format(tensor_name_prefix_torch): {
                "name": "{}/cnn_a/conv1d/bias".format(tensor_name_prefix_tf),
                "squeeze": None,
                "transpose": None,
            },
            "{}.cnn_a.layeridx.conv1d.weight".format(tensor_name_prefix_torch): {
                "name": "{}/cnn_a/conv1d_layeridx/kernel".format(tensor_name_prefix_tf),
                "squeeze": None,
                "transpose": (2, 1, 0),
            },
            "{}.cnn_a.layeridx.conv1d.bias".format(tensor_name_prefix_torch): {
                "name": "{}/cnn_a/conv1d_layeridx/bias".format(tensor_name_prefix_tf),
                "squeeze": None,
                "transpose": None,
            },
        }
        if self.out_units is not None:
            # add output layer
            map_dict_local.update(
                {
                    "{}.conv_out.weight".format(tensor_name_prefix_torch): {
                        "name": "{}/cnn_a/conv1d_{}/kernel".format(
                            tensor_name_prefix_tf, self.num_layers
                        ),
                        "squeeze": None,
                        "transpose": (2, 1, 0),
                    },  # tf: (1, 256, 256) -> torch: (256, 256, 1)
                    "{}.conv_out.bias".format(tensor_name_prefix_torch): {
                        "name": "{}/cnn_a/conv1d_{}/bias".format(
                            tensor_name_prefix_tf, self.num_layers
                        ),
                        "squeeze": None,
                        "transpose": None,
                    },  # tf: (256,) -> torch: (256,)
                }
            )

        return map_dict_local

    def convert_tf2torch(
        self,
        var_dict_tf,
        var_dict_torch,
    ):

        map_dict = self.gen_tf2torch_map_dict()

        var_dict_torch_update = dict()
        for name in sorted(var_dict_torch.keys(), reverse=False):
            if name.startswith(self.tf2torch_tensor_name_prefix_torch):
                # process special (first and last) layers
                if name in map_dict:
                    name_tf = map_dict[name]["name"]
                    data_tf = var_dict_tf[name_tf]
                    if map_dict[name]["squeeze"] is not None:
                        data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
                    if map_dict[name]["transpose"] is not None:
                        data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
                    data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
                    assert (
                        var_dict_torch[name].size() == data_tf.size()
                    ), "{}, {}, {} != {}".format(
                        name, name_tf, var_dict_torch[name].size(), data_tf.size()
                    )
                    var_dict_torch_update[name] = data_tf
                    logging.info(
                        "torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
                            name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
                        )
                    )
                # process general layers
                else:
                    # self.tf2torch_tensor_name_prefix_torch may include ".", solve this case
                    names = name.replace(
                        self.tf2torch_tensor_name_prefix_torch, "todo"
                    ).split(".")
                    layeridx = int(names[2])
                    name_q = name.replace(".{}.".format(layeridx), ".layeridx.")
                    if name_q in map_dict.keys():
                        name_v = map_dict[name_q]["name"]
                        name_tf = name_v.replace("layeridx", "{}".format(layeridx))
                        data_tf = var_dict_tf[name_tf]
                        if map_dict[name_q]["squeeze"] is not None:
                            data_tf = np.squeeze(
                                data_tf, axis=map_dict[name_q]["squeeze"]
                            )
                        if map_dict[name_q]["transpose"] is not None:
                            data_tf = np.transpose(
                                data_tf, map_dict[name_q]["transpose"]
                            )
                        data_tf = (
                            torch.from_numpy(data_tf).type(torch.float32).to("cpu")
                        )
                        assert (
                            var_dict_torch[name].size() == data_tf.size()
                        ), "{}, {}, {} != {}".format(
                            name, name_tf, var_dict_torch[name].size(), data_tf.size()
                        )
                        var_dict_torch_update[name] = data_tf
                        logging.info(
                            "torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
                                name,
                                data_tf.size(),
                                name_tf,
                                var_dict_tf[name_tf].shape,
                            )
                        )
                    else:
                        logging.warning("{} is missed from tf checkpoint".format(name))

        return var_dict_torch_update