File size: 19,796 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
import math
import torch
import torch.nn as nn
import torch.nn.functional as F


class _BatchNorm1d(nn.Module):
    def __init__(
        self,
        input_shape=None,
        input_size=None,
        eps=1e-05,
        momentum=0.1,
        affine=True,
        track_running_stats=True,
        combine_batch_time=False,
        skip_transpose=False,
    ):
        super().__init__()
        self.combine_batch_time = combine_batch_time
        self.skip_transpose = skip_transpose

        if input_size is None and skip_transpose:
            input_size = input_shape[1]
        elif input_size is None:
            input_size = input_shape[-1]

        self.norm = nn.BatchNorm1d(
            input_size,
            eps=eps,
            momentum=momentum,
            affine=affine,
            track_running_stats=track_running_stats,
        )

    def forward(self, x):
        shape_or = x.shape
        if self.combine_batch_time:
            if x.ndim == 3:
                x = x.reshape(shape_or[0] * shape_or[1], shape_or[2])
            else:
                x = x.reshape(shape_or[0] * shape_or[1], shape_or[3], shape_or[2])

        elif not self.skip_transpose:
            x = x.transpose(-1, 1)

        x_n = self.norm(x)

        if self.combine_batch_time:
            x_n = x_n.reshape(shape_or)
        elif not self.skip_transpose:
            x_n = x_n.transpose(1, -1)

        return x_n


class _Conv1d(nn.Module):
    def __init__(
        self,
        out_channels,
        kernel_size,
        input_shape=None,
        in_channels=None,
        stride=1,
        dilation=1,
        padding="same",
        groups=1,
        bias=True,
        padding_mode="reflect",
        skip_transpose=False,
    ):
        super().__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.dilation = dilation
        self.padding = padding
        self.padding_mode = padding_mode
        self.unsqueeze = False
        self.skip_transpose = skip_transpose

        if input_shape is None and in_channels is None:
            raise ValueError("Must provide one of input_shape or in_channels")

        if in_channels is None:
            in_channels = self._check_input_shape(input_shape)

        self.conv = nn.Conv1d(
            in_channels,
            out_channels,
            self.kernel_size,
            stride=self.stride,
            dilation=self.dilation,
            padding=0,
            groups=groups,
            bias=bias,
        )

    def forward(self, x):
        if not self.skip_transpose:
            x = x.transpose(1, -1)

        if self.unsqueeze:
            x = x.unsqueeze(1)

        if self.padding == "same":
            x = self._manage_padding(x, self.kernel_size, self.dilation, self.stride)

        elif self.padding == "causal":
            num_pad = (self.kernel_size - 1) * self.dilation
            x = F.pad(x, (num_pad, 0))

        elif self.padding == "valid":
            pass

        else:
            raise ValueError(
                "Padding must be 'same', 'valid' or 'causal'. Got " + self.padding
            )

        wx = self.conv(x)

        if self.unsqueeze:
            wx = wx.squeeze(1)

        if not self.skip_transpose:
            wx = wx.transpose(1, -1)

        return wx

    def _manage_padding(
        self,
        x,
        kernel_size: int,
        dilation: int,
        stride: int,
    ):
        # Detecting input shape
        L_in = x.shape[-1]

        # Time padding
        padding = get_padding_elem(L_in, stride, kernel_size, dilation)

        # Applying padding
        x = F.pad(x, padding, mode=self.padding_mode)

        return x

    def _check_input_shape(self, shape):
        """Checks the input shape and returns the number of input channels."""

        if len(shape) == 2:
            self.unsqueeze = True
            in_channels = 1
        elif self.skip_transpose:
            in_channels = shape[1]
        elif len(shape) == 3:
            in_channels = shape[2]
        else:
            raise ValueError("conv1d expects 2d, 3d inputs. Got " + str(len(shape)))

        # Kernel size must be odd
        if self.kernel_size % 2 == 0:
            raise ValueError(
                "The field kernel size must be an odd number. Got %s."
                % (self.kernel_size)
            )
        return in_channels


def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int):
    if stride > 1:
        n_steps = math.ceil(((L_in - kernel_size * dilation) / stride) + 1)
        L_out = stride * (n_steps - 1) + kernel_size * dilation
        padding = [kernel_size // 2, kernel_size // 2]

    else:
        L_out = (L_in - dilation * (kernel_size - 1) - 1) // stride + 1

        padding = [(L_in - L_out) // 2, (L_in - L_out) // 2]
    return padding


# Skip transpose as much as possible for efficiency
class Conv1d(_Conv1d):
    def __init__(self, *args, **kwargs):
        super().__init__(skip_transpose=True, *args, **kwargs)


class BatchNorm1d(_BatchNorm1d):
    def __init__(self, *args, **kwargs):
        super().__init__(skip_transpose=True, *args, **kwargs)


def length_to_mask(length, max_len=None, dtype=None, device=None):
    assert len(length.shape) == 1

    if max_len is None:
        max_len = length.max().long().item()  # using arange to generate mask
    mask = torch.arange(max_len, device=length.device, dtype=length.dtype).expand(
        len(length), max_len
    ) < length.unsqueeze(1)

    if dtype is None:
        dtype = length.dtype

    if device is None:
        device = length.device

    mask = torch.as_tensor(mask, dtype=dtype, device=device)
    return mask


class TDNNBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        dilation,
        activation=nn.ReLU,
        groups=1,
    ):
        super(TDNNBlock, self).__init__()
        self.conv = Conv1d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            dilation=dilation,
            groups=groups,
        )
        self.activation = activation()
        self.norm = BatchNorm1d(input_size=out_channels)

    def forward(self, x):
        return self.norm(self.activation(self.conv(x)))


class Res2NetBlock(torch.nn.Module):
    """An implementation of Res2NetBlock w/ dilation.

    Arguments
    ---------
    in_channels : int
        The number of channels expected in the input.
    out_channels : int
        The number of output channels.
    scale : int
        The scale of the Res2Net block.
    kernel_size: int
        The kernel size of the Res2Net block.
    dilation : int
        The dilation of the Res2Net block.

    Example
    -------
    >>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
    >>> layer = Res2NetBlock(64, 64, scale=4, dilation=3)
    >>> out_tensor = layer(inp_tensor).transpose(1, 2)
    >>> out_tensor.shape
    torch.Size([8, 120, 64])
    """

    def __init__(self, in_channels, out_channels, scale=8, kernel_size=3, dilation=1):
        super(Res2NetBlock, self).__init__()
        assert in_channels % scale == 0
        assert out_channels % scale == 0

        in_channel = in_channels // scale
        hidden_channel = out_channels // scale

        self.blocks = nn.ModuleList(
            [
                TDNNBlock(
                    in_channel,
                    hidden_channel,
                    kernel_size=kernel_size,
                    dilation=dilation,
                )
                for i in range(scale - 1)
            ]
        )
        self.scale = scale

    def forward(self, x):
        y = []
        for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)):
            if i == 0:
                y_i = x_i
            elif i == 1:
                y_i = self.blocks[i - 1](x_i)
            else:
                y_i = self.blocks[i - 1](x_i + y_i)
            y.append(y_i)
        y = torch.cat(y, dim=1)
        return y


class SEBlock(nn.Module):
    """An implementation of squeeze-and-excitation block.

    Arguments
    ---------
    in_channels : int
        The number of input channels.
    se_channels : int
        The number of output channels after squeeze.
    out_channels : int
        The number of output channels.

    Example
    -------
    >>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
    >>> se_layer = SEBlock(64, 16, 64)
    >>> lengths = torch.rand((8,))
    >>> out_tensor = se_layer(inp_tensor, lengths).transpose(1, 2)
    >>> out_tensor.shape
    torch.Size([8, 120, 64])
    """

    def __init__(self, in_channels, se_channels, out_channels):
        super(SEBlock, self).__init__()

        self.conv1 = Conv1d(
            in_channels=in_channels, out_channels=se_channels, kernel_size=1
        )
        self.relu = torch.nn.ReLU(inplace=True)
        self.conv2 = Conv1d(
            in_channels=se_channels, out_channels=out_channels, kernel_size=1
        )
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x, lengths=None):
        L = x.shape[-1]
        if lengths is not None:
            mask = length_to_mask(lengths * L, max_len=L, device=x.device)
            mask = mask.unsqueeze(1)
            total = mask.sum(dim=2, keepdim=True)
            s = (x * mask).sum(dim=2, keepdim=True) / total
        else:
            s = x.mean(dim=2, keepdim=True)

        s = self.relu(self.conv1(s))
        s = self.sigmoid(self.conv2(s))

        return s * x


class AttentiveStatisticsPooling(nn.Module):
    """This class implements an attentive statistic pooling layer for each channel.
    It returns the concatenated mean and std of the input tensor.

    Arguments
    ---------
    channels: int
        The number of input channels.
    attention_channels: int
        The number of attention channels.

    Example
    -------
    >>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
    >>> asp_layer = AttentiveStatisticsPooling(64)
    >>> lengths = torch.rand((8,))
    >>> out_tensor = asp_layer(inp_tensor, lengths).transpose(1, 2)
    >>> out_tensor.shape
    torch.Size([8, 1, 128])
    """

    def __init__(self, channels, attention_channels=128, global_context=True):
        super().__init__()

        self.eps = 1e-12
        self.global_context = global_context
        if global_context:
            self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1)
        else:
            self.tdnn = TDNNBlock(channels, attention_channels, 1, 1)
        self.tanh = nn.Tanh()
        self.conv = Conv1d(
            in_channels=attention_channels, out_channels=channels, kernel_size=1
        )

    def forward(self, x, lengths=None):
        """Calculates mean and std for a batch (input tensor).

        Arguments
        ---------
        x : torch.Tensor
            Tensor of shape [N, C, L].
        """
        L = x.shape[-1]

        def _compute_statistics(x, m, dim=2, eps=self.eps):
            mean = (m * x).sum(dim)
            std = torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps))
            return mean, std

        if lengths is None:
            lengths = torch.ones(x.shape[0], device=x.device)

        # Make binary mask of shape [N, 1, L]
        mask = length_to_mask(lengths * L, max_len=L, device=x.device)
        mask = mask.unsqueeze(1)

        # Expand the temporal context of the pooling layer by allowing the
        # self-attention to look at global properties of the utterance.
        if self.global_context:
            # torch.std is unstable for backward computation
            # https://github.com/pytorch/pytorch/issues/4320
            total = mask.sum(dim=2, keepdim=True).float()
            mean, std = _compute_statistics(x, mask / total)
            mean = mean.unsqueeze(2).repeat(1, 1, L)
            std = std.unsqueeze(2).repeat(1, 1, L)
            attn = torch.cat([x, mean, std], dim=1)
        else:
            attn = x

        # Apply layers
        attn = self.conv(self.tanh(self.tdnn(attn)))

        # Filter out zero-paddings
        attn = attn.masked_fill(mask == 0, float("-inf"))

        attn = F.softmax(attn, dim=2)
        mean, std = _compute_statistics(x, attn)
        # Append mean and std of the batch
        pooled_stats = torch.cat((mean, std), dim=1)
        pooled_stats = pooled_stats.unsqueeze(2)

        return pooled_stats


class SERes2NetBlock(nn.Module):
    """An implementation of building block in ECAPA-TDNN, i.e.,
    TDNN-Res2Net-TDNN-SEBlock.

    Arguments
    ----------
    out_channels: int
        The number of output channels.
    res2net_scale: int
        The scale of the Res2Net block.
    kernel_size: int
        The kernel size of the TDNN blocks.
    dilation: int
        The dilation of the Res2Net block.
    activation : torch class
        A class for constructing the activation layers.
    groups: int
    Number of blocked connections from input channels to output channels.

    Example
    -------
    >>> x = torch.rand(8, 120, 64).transpose(1, 2)
    >>> conv = SERes2NetBlock(64, 64, res2net_scale=4)
    >>> out = conv(x).transpose(1, 2)
    >>> out.shape
    torch.Size([8, 120, 64])
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        res2net_scale=8,
        se_channels=128,
        kernel_size=1,
        dilation=1,
        activation=torch.nn.ReLU,
        groups=1,
    ):
        super().__init__()
        self.out_channels = out_channels
        self.tdnn1 = TDNNBlock(
            in_channels,
            out_channels,
            kernel_size=1,
            dilation=1,
            activation=activation,
            groups=groups,
        )
        self.res2net_block = Res2NetBlock(
            out_channels, out_channels, res2net_scale, kernel_size, dilation
        )
        self.tdnn2 = TDNNBlock(
            out_channels,
            out_channels,
            kernel_size=1,
            dilation=1,
            activation=activation,
            groups=groups,
        )
        self.se_block = SEBlock(out_channels, se_channels, out_channels)

        self.shortcut = None
        if in_channels != out_channels:
            self.shortcut = Conv1d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
            )

    def forward(self, x, lengths=None):
        residual = x
        if self.shortcut:
            residual = self.shortcut(x)

        x = self.tdnn1(x)
        x = self.res2net_block(x)
        x = self.tdnn2(x)
        x = self.se_block(x, lengths)

        return x + residual


class ECAPA_TDNN(torch.nn.Module):
    """An implementation of the speaker embedding model in a paper.
    "ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in
    TDNN Based Speaker Verification" (https://arxiv.org/abs/2005.07143).

    Arguments
    ---------
    activation : torch class
        A class for constructing the activation layers.
    channels : list of ints
        Output channels for TDNN/SERes2Net layer.
    kernel_sizes : list of ints
        List of kernel sizes for each layer.
    dilations : list of ints
        List of dilations for kernels in each layer.
    lin_neurons : int
        Number of neurons in linear layers.
    groups : list of ints
        List of groups for kernels in each layer.

    Example
    -------
    >>> input_feats = torch.rand([5, 120, 80])
    >>> compute_embedding = ECAPA_TDNN(80, lin_neurons=192)
    >>> outputs = compute_embedding(input_feats)
    >>> outputs.shape
    torch.Size([5, 1, 192])
    """

    def __init__(
        self,
        input_size,
        lin_neurons=192,
        activation=torch.nn.ReLU,
        channels=[512, 512, 512, 512, 1536],
        kernel_sizes=[5, 3, 3, 3, 1],
        dilations=[1, 2, 3, 4, 1],
        attention_channels=128,
        res2net_scale=8,
        se_channels=128,
        global_context=True,
        groups=[1, 1, 1, 1, 1],
        window_size=20,
        window_shift=1,
    ):

        super().__init__()
        assert len(channels) == len(kernel_sizes)
        assert len(channels) == len(dilations)
        self.channels = channels
        self.blocks = nn.ModuleList()
        self.window_size = window_size
        self.window_shift = window_shift

        # The initial TDNN layer
        self.blocks.append(
            TDNNBlock(
                input_size,
                channels[0],
                kernel_sizes[0],
                dilations[0],
                activation,
                groups[0],
            )
        )

        # SE-Res2Net layers
        for i in range(1, len(channels) - 1):
            self.blocks.append(
                SERes2NetBlock(
                    channels[i - 1],
                    channels[i],
                    res2net_scale=res2net_scale,
                    se_channels=se_channels,
                    kernel_size=kernel_sizes[i],
                    dilation=dilations[i],
                    activation=activation,
                    groups=groups[i],
                )
            )

        # Multi-layer feature aggregation
        self.mfa = TDNNBlock(
            channels[-1],
            channels[-1],
            kernel_sizes[-1],
            dilations[-1],
            activation,
            groups=groups[-1],
        )

        # Attentive Statistical Pooling
        self.asp = AttentiveStatisticsPooling(
            channels[-1],
            attention_channels=attention_channels,
            global_context=global_context,
        )
        self.asp_bn = BatchNorm1d(input_size=channels[-1] * 2)

        # Final linear transformation
        self.fc = Conv1d(
            in_channels=channels[-1] * 2,
            out_channels=lin_neurons,
            kernel_size=1,
        )

    def windowed_pooling(self, x, lengths=None):
        # x: Batch, Channel, Time
        tt = x.shape[2]
        num_chunk = int(math.ceil(tt / self.window_shift))
        pad = self.window_size // 2
        x = F.pad(x, (pad, pad, 0, 0), "reflect")
        stat_list = []

        for i in range(num_chunk):
            # B x C
            st, ed = i * self.window_shift, i * self.window_shift + self.window_size
            x = self.asp(
                x[:, :, st:ed],
                lengths=(
                    torch.clamp(lengths - i, 0, self.window_size)
                    if lengths is not None
                    else None
                ),
            )
            x = self.asp_bn(x)
            x = self.fc(x)
            stat_list.append(x)

        return torch.cat(stat_list, dim=2)

    def forward(self, x, lengths=None):
        """Returns the embedding vector.

        Arguments
        ---------
        x : torch.Tensor
            Tensor of shape (batch, time, channel).
        lengths: torch.Tensor
            Tensor of shape (batch, )
        """
        # Minimize transpose for efficiency
        x = x.transpose(1, 2)

        xl = []
        for layer in self.blocks:
            try:
                x = layer(x, lengths=lengths)
            except TypeError:
                x = layer(x)
            xl.append(x)

        # Multi-layer feature aggregation
        x = torch.cat(xl[1:], dim=1)
        x = self.mfa(x)

        if self.window_size is None:
            # Attentive Statistical Pooling
            x = self.asp(x, lengths=lengths)
            x = self.asp_bn(x)
            # Final linear transformation
            x = self.fc(x)
            # x = x.transpose(1, 2)
            x = x.squeeze(2)  # -> B, C
        else:
            x = self.windowed_pooling(x, lengths)
            x = x.transpose(1, 2)  # -> B, T, C
        return x