File size: 14,595 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
import math
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.utils.multi_layer_conv import FsmnFeedForward


class FsmnBlock(torch.nn.Module):
    def __init__(
        self,
        n_feat,
        dropout_rate,
        kernel_size,
        fsmn_shift=0,
    ):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout_rate)
        self.fsmn_block = nn.Conv1d(
            n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False
        )
        # padding
        left_padding = (kernel_size - 1) // 2
        if fsmn_shift > 0:
            left_padding = left_padding + fsmn_shift
        right_padding = kernel_size - 1 - left_padding
        self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0)

    def forward(self, inputs, mask, mask_shfit_chunk=None):
        b, t, d = inputs.size()
        if mask is not None:
            mask = torch.reshape(mask, (b, -1, 1))
            if mask_shfit_chunk is not None:
                mask = mask * mask_shfit_chunk

        inputs = inputs * mask
        x = inputs.transpose(1, 2)
        x = self.pad_fn(x)
        x = self.fsmn_block(x)
        x = x.transpose(1, 2)
        x = x + inputs
        x = self.dropout(x)
        return x * mask


class EncoderLayer(torch.nn.Module):
    def __init__(self, in_size, size, feed_forward, fsmn_block, dropout_rate=0.0):
        super().__init__()
        self.in_size = in_size
        self.size = size
        self.ffn = feed_forward
        self.memory = fsmn_block
        self.dropout = nn.Dropout(dropout_rate)

    def forward(
        self, xs_pad: torch.Tensor, mask: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # xs_pad in Batch, Time, Dim

        context = self.ffn(xs_pad)[0]
        memory = self.memory(context, mask)

        memory = self.dropout(memory)
        if self.in_size == self.size:
            return memory + xs_pad, mask

        return memory, mask


class FsmnEncoder(AbsEncoder):
    """Encoder using Fsmn"""

    def __init__(
        self,
        in_units,
        filter_size,
        fsmn_num_layers,
        dnn_num_layers,
        num_memory_units=512,
        ffn_inner_dim=2048,
        dropout_rate=0.0,
        shift=0,
        position_encoder=None,
        sample_rate=1,
        out_units=None,
        tf2torch_tensor_name_prefix_torch="post_net",
        tf2torch_tensor_name_prefix_tf="EAND/post_net",
    ):
        """Initializes the parameters of the encoder.

        Args:
          filter_size: the total order of memory block
          fsmn_num_layers: The number of fsmn layers.
          dnn_num_layers: The number of dnn layers
          num_units: The number of memory units.
          ffn_inner_dim: The number of units of the inner linear transformation
            in the feed forward layer.
          dropout_rate: The probability to drop units from the outputs.
          shift: left padding, to control delay
          position_encoder: The :class:`opennmt.layers.position.PositionEncoder` to
            apply on inputs or ``None``.
        """
        super(FsmnEncoder, self).__init__()
        self.in_units = in_units
        self.filter_size = filter_size
        self.fsmn_num_layers = fsmn_num_layers
        self.dnn_num_layers = dnn_num_layers
        self.num_memory_units = num_memory_units
        self.ffn_inner_dim = ffn_inner_dim
        self.dropout_rate = dropout_rate
        self.shift = shift
        if not isinstance(shift, list):
            self.shift = [shift for _ in range(self.fsmn_num_layers)]
        self.sample_rate = sample_rate
        if not isinstance(sample_rate, list):
            self.sample_rate = [sample_rate for _ in range(self.fsmn_num_layers)]
        self.position_encoder = position_encoder
        self.dropout = nn.Dropout(dropout_rate)
        self.out_units = out_units
        self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
        self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf

        self.fsmn_layers = repeat(
            self.fsmn_num_layers,
            lambda lnum: EncoderLayer(
                in_units if lnum == 0 else num_memory_units,
                num_memory_units,
                FsmnFeedForward(
                    in_units if lnum == 0 else num_memory_units,
                    ffn_inner_dim,
                    num_memory_units,
                    1,
                    dropout_rate,
                ),
                FsmnBlock(
                    num_memory_units, dropout_rate, filter_size, self.shift[lnum]
                ),
            ),
        )

        self.dnn_layers = repeat(
            dnn_num_layers,
            lambda lnum: FsmnFeedForward(
                num_memory_units,
                ffn_inner_dim,
                num_memory_units,
                1,
                dropout_rate,
            ),
        )
        if out_units is not None:
            self.conv1d = nn.Conv1d(num_memory_units, out_units, 1, 1)

    def output_size(self) -> int:
        return self.num_memory_units

    def forward(
        self,
        xs_pad: torch.Tensor,
        ilens: torch.Tensor,
        prev_states: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        inputs = xs_pad
        if self.position_encoder is not None:
            inputs = self.position_encoder(inputs)

        inputs = self.dropout(inputs)
        masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
        inputs = self.fsmn_layers(inputs, masks)[0]
        inputs = self.dnn_layers(inputs)[0]

        if self.out_units is not None:
            inputs = self.conv1d(inputs.transpose(1, 2)).transpose(1, 2)

        return inputs, ilens, None

    def gen_tf2torch_map_dict(self):
        tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
        tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
        map_dict_local = {
            # torch: conv1d.weight in "out_channel in_channel kernel_size"
            # tf   : conv1d.weight in "kernel_size in_channel out_channel"
            # torch: linear.weight in "out_channel in_channel"
            # tf   :  dense.weight in "in_channel out_channel"
            # for fsmn_layers
            "{}.fsmn_layers.layeridx.ffn.norm.bias".format(tensor_name_prefix_torch): {
                "name": "{}/fsmn_layer_layeridx/ffn/LayerNorm/beta".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": None,
                "transpose": None,
            },
            "{}.fsmn_layers.layeridx.ffn.norm.weight".format(
                tensor_name_prefix_torch
            ): {
                "name": "{}/fsmn_layer_layeridx/ffn/LayerNorm/gamma".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": None,
                "transpose": None,
            },
            "{}.fsmn_layers.layeridx.ffn.w_1.bias".format(tensor_name_prefix_torch): {
                "name": "{}/fsmn_layer_layeridx/ffn/conv1d/bias".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": None,
                "transpose": None,
            },
            "{}.fsmn_layers.layeridx.ffn.w_1.weight".format(tensor_name_prefix_torch): {
                "name": "{}/fsmn_layer_layeridx/ffn/conv1d/kernel".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": None,
                "transpose": (2, 1, 0),
            },
            "{}.fsmn_layers.layeridx.ffn.w_2.weight".format(tensor_name_prefix_torch): {
                "name": "{}/fsmn_layer_layeridx/ffn/conv1d_1/kernel".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": None,
                "transpose": (2, 1, 0),
            },
            "{}.fsmn_layers.layeridx.memory.fsmn_block.weight".format(
                tensor_name_prefix_torch
            ): {
                "name": "{}/fsmn_layer_layeridx/memory/depth_conv_w".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": 0,
                "transpose": (1, 2, 0),
            },  # (1, 31, 512, 1) -> (31, 512, 1) -> (512, 1, 31)
            # for dnn_layers
            "{}.dnn_layers.layeridx.norm.bias".format(tensor_name_prefix_torch): {
                "name": "{}/dnn_layer_layeridx/LayerNorm/beta".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": None,
                "transpose": None,
            },
            "{}.dnn_layers.layeridx.norm.weight".format(tensor_name_prefix_torch): {
                "name": "{}/dnn_layer_layeridx/LayerNorm/gamma".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": None,
                "transpose": None,
            },
            "{}.dnn_layers.layeridx.w_1.bias".format(tensor_name_prefix_torch): {
                "name": "{}/dnn_layer_layeridx/conv1d/bias".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": None,
                "transpose": None,
            },
            "{}.dnn_layers.layeridx.w_1.weight".format(tensor_name_prefix_torch): {
                "name": "{}/dnn_layer_layeridx/conv1d/kernel".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": None,
                "transpose": (2, 1, 0),
            },
            "{}.dnn_layers.layeridx.w_2.weight".format(tensor_name_prefix_torch): {
                "name": "{}/dnn_layer_layeridx/conv1d_1/kernel".format(
                    tensor_name_prefix_tf
                ),
                "squeeze": None,
                "transpose": (2, 1, 0),
            },
        }
        if self.out_units is not None:
            # add output layer
            map_dict_local.update(
                {
                    "{}.conv1d.weight".format(tensor_name_prefix_torch): {
                        "name": "{}/conv1d/kernel".format(tensor_name_prefix_tf),
                        "squeeze": None,
                        "transpose": (2, 1, 0),
                    },
                    "{}.conv1d.bias".format(tensor_name_prefix_torch): {
                        "name": "{}/conv1d/bias".format(tensor_name_prefix_tf),
                        "squeeze": None,
                        "transpose": None,
                    },
                }
            )

        return map_dict_local

    def convert_tf2torch(
        self,
        var_dict_tf,
        var_dict_torch,
    ):

        map_dict = self.gen_tf2torch_map_dict()

        var_dict_torch_update = dict()
        for name in sorted(var_dict_torch.keys(), reverse=False):
            if name.startswith(self.tf2torch_tensor_name_prefix_torch):
                # process special (first and last) layers
                if name in map_dict:
                    name_tf = map_dict[name]["name"]
                    data_tf = var_dict_tf[name_tf]
                    if map_dict[name]["squeeze"] is not None:
                        data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
                    if map_dict[name]["transpose"] is not None:
                        data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
                    data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
                    assert (
                        var_dict_torch[name].size() == data_tf.size()
                    ), "{}, {}, {} != {}".format(
                        name, name_tf, var_dict_torch[name].size(), data_tf.size()
                    )
                    var_dict_torch_update[name] = data_tf
                    logging.info(
                        "torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
                            name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
                        )
                    )
                # process general layers
                else:
                    # self.tf2torch_tensor_name_prefix_torch may include ".", solve this case
                    names = name.replace(
                        self.tf2torch_tensor_name_prefix_torch, "todo"
                    ).split(".")
                    layeridx = int(names[2])
                    name_q = name.replace(".{}.".format(layeridx), ".layeridx.")
                    if name_q in map_dict.keys():
                        name_v = map_dict[name_q]["name"]
                        name_tf = name_v.replace("layeridx", "{}".format(layeridx))
                        data_tf = var_dict_tf[name_tf]
                        if map_dict[name_q]["squeeze"] is not None:
                            data_tf = np.squeeze(
                                data_tf, axis=map_dict[name_q]["squeeze"]
                            )
                        if map_dict[name_q]["transpose"] is not None:
                            data_tf = np.transpose(
                                data_tf, map_dict[name_q]["transpose"]
                            )
                        data_tf = (
                            torch.from_numpy(data_tf).type(torch.float32).to("cpu")
                        )
                        assert (
                            var_dict_torch[name].size() == data_tf.size()
                        ), "{}, {}, {} != {}".format(
                            name, name_tf, var_dict_torch[name].size(), data_tf.size()
                        )
                        var_dict_torch_update[name] = data_tf
                        logging.info(
                            "torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
                                name,
                                data_tf.size(),
                                name_tf,
                                var_dict_tf[name_tf].shape,
                            )
                        )
                    else:
                        logging.warning("{} is missed from tf checkpoint".format(name))

        return var_dict_torch_update