File size: 23,151 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import torch
import numpy as np
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

from funasr_detach.models.transducer.joint_network import JointNetwork


@dataclass
class Hypothesis:
    """Default hypothesis definition for Transducer search algorithms.

    Args:
        score: Total log-probability.
        yseq: Label sequence as integer ID sequence.
        dec_state: RNNDecoder or StatelessDecoder state.
                     ((N, 1, D_dec), (N, 1, D_dec) or None) or None
        lm_state: RNNLM state. ((N, D_lm), (N, D_lm)) or None

    """

    score: float
    yseq: List[int]
    dec_state: Optional[Tuple[torch.Tensor, Optional[torch.Tensor]]] = None
    lm_state: Optional[Union[Dict[str, Any], List[Any]]] = None


@dataclass
class ExtendedHypothesis(Hypothesis):
    """Extended hypothesis definition for NSC beam search and mAES.

    Args:
        : Hypothesis dataclass arguments.
        dec_out: Decoder output sequence. (B, D_dec)
        lm_score: Log-probabilities of the LM for given label. (vocab_size)

    """

    dec_out: torch.Tensor = None
    lm_score: torch.Tensor = None


class BeamSearchTransducer:
    """Beam search implementation for Transducer.

    Args:
        decoder: Decoder module.
        joint_network: Joint network module.
        beam_size: Size of the beam.
        lm: LM class.
        lm_weight: LM weight for soft fusion.
        search_type: Search algorithm to use during inference.
        max_sym_exp: Number of maximum symbol expansions at each time step. (TSD)
        u_max: Maximum expected target sequence length. (ALSD)
        nstep: Number of maximum expansion steps at each time step. (mAES)
        expansion_gamma: Allowed logp difference for prune-by-value method. (mAES)
        expansion_beta:
             Number of additional candidates for expanded hypotheses selection. (mAES)
        score_norm: Normalize final scores by length.
        nbest: Number of final hypothesis.
        streaming: Whether to perform chunk-by-chunk beam search.

    """

    def __init__(
        self,
        decoder,
        joint_network: JointNetwork,
        beam_size: int,
        lm: Optional[torch.nn.Module] = None,
        lm_weight: float = 0.1,
        search_type: str = "default",
        max_sym_exp: int = 3,
        u_max: int = 50,
        nstep: int = 2,
        expansion_gamma: float = 2.3,
        expansion_beta: int = 2,
        score_norm: bool = False,
        nbest: int = 1,
        streaming: bool = False,
    ) -> None:
        """Construct a BeamSearchTransducer object."""
        super().__init__()

        self.decoder = decoder
        self.joint_network = joint_network

        self.vocab_size = decoder.vocab_size

        assert beam_size <= self.vocab_size, (
            "beam_size (%d) should be smaller than or equal to vocabulary size (%d)."
            % (
                beam_size,
                self.vocab_size,
            )
        )
        self.beam_size = beam_size

        if search_type == "default":
            self.search_algorithm = self.default_beam_search
        elif search_type == "tsd":
            assert max_sym_exp > 1, "max_sym_exp (%d) should be greater than one." % (
                max_sym_exp
            )
            self.max_sym_exp = max_sym_exp

            self.search_algorithm = self.time_sync_decoding
        elif search_type == "alsd":
            assert not streaming, "ALSD is not available in streaming mode."

            assert u_max >= 0, "u_max should be a positive integer, a portion of max_T."
            self.u_max = u_max

            self.search_algorithm = self.align_length_sync_decoding
        elif search_type == "maes":
            assert self.vocab_size >= beam_size + expansion_beta, (
                "beam_size (%d) + expansion_beta (%d) "
                " should be smaller than or equal to vocab size (%d)."
                % (beam_size, expansion_beta, self.vocab_size)
            )
            self.max_candidates = beam_size + expansion_beta

            self.nstep = nstep
            self.expansion_gamma = expansion_gamma

            self.search_algorithm = self.modified_adaptive_expansion_search
        else:
            raise NotImplementedError(
                "Specified search type (%s) is not supported." % search_type
            )

        self.use_lm = lm is not None

        if self.use_lm:
            assert hasattr(lm, "rnn_type"), "Transformer LM is currently not supported."

            self.sos = self.vocab_size - 1

            self.lm = lm
            self.lm_weight = lm_weight

        self.score_norm = score_norm
        self.nbest = nbest

        self.reset_inference_cache()

    def __call__(
        self,
        enc_out: torch.Tensor,
        is_final: bool = True,
    ) -> List[Hypothesis]:
        """Perform beam search.

        Args:
            enc_out: Encoder output sequence. (T, D_enc)
            is_final: Whether enc_out is the final chunk of data.

        Returns:
            nbest_hyps: N-best decoding results

        """
        self.decoder.set_device(enc_out.device)

        hyps = self.search_algorithm(enc_out)

        if is_final:
            self.reset_inference_cache()

            return self.sort_nbest(hyps)

        self.search_cache = hyps

        return hyps

    def reset_inference_cache(self) -> None:
        """Reset cache for decoder scoring and streaming."""
        self.decoder.score_cache = {}
        self.search_cache = None

    def sort_nbest(self, hyps: List[Hypothesis]) -> List[Hypothesis]:
        """Sort in-place hypotheses by score or score given sequence length.

        Args:
            hyps: Hypothesis.

        Return:
            hyps: Sorted hypothesis.

        """
        if self.score_norm:
            hyps.sort(key=lambda x: x.score / len(x.yseq), reverse=True)
        else:
            hyps.sort(key=lambda x: x.score, reverse=True)

        return hyps[: self.nbest]

    def recombine_hyps(self, hyps: List[Hypothesis]) -> List[Hypothesis]:
        """Recombine hypotheses with same label ID sequence.

        Args:
            hyps: Hypotheses.

        Returns:
            final: Recombined hypotheses.

        """
        final = {}

        for hyp in hyps:
            str_yseq = "_".join(map(str, hyp.yseq))

            if str_yseq in final:
                final[str_yseq].score = np.logaddexp(final[str_yseq].score, hyp.score)
            else:
                final[str_yseq] = hyp

        return [*final.values()]

    def select_k_expansions(
        self,
        hyps: List[ExtendedHypothesis],
        topk_idx: torch.Tensor,
        topk_logp: torch.Tensor,
    ) -> List[ExtendedHypothesis]:
        """Return K hypotheses candidates for expansion from a list of hypothesis.

        K candidates are selected according to the extended hypotheses probabilities
        and a prune-by-value method. Where K is equal to beam_size + beta.

        Args:
            hyps: Hypotheses.
            topk_idx: Indices of candidates hypothesis.
            topk_logp: Log-probabilities of candidates hypothesis.

        Returns:
            k_expansions: Best K expansion hypotheses candidates.

        """
        k_expansions = []

        for i, hyp in enumerate(hyps):
            hyp_i = [
                (int(k), hyp.score + float(v))
                for k, v in zip(topk_idx[i], topk_logp[i])
            ]
            k_best_exp = max(hyp_i, key=lambda x: x[1])[1]

            k_expansions.append(
                sorted(
                    filter(
                        lambda x: (k_best_exp - self.expansion_gamma) <= x[1], hyp_i
                    ),
                    key=lambda x: x[1],
                    reverse=True,
                )
            )

        return k_expansions

    def create_lm_batch_inputs(self, hyps_seq: List[List[int]]) -> torch.Tensor:
        """Make batch of inputs with left padding for LM scoring.

        Args:
            hyps_seq: Hypothesis sequences.

        Returns:
            : Padded batch of sequences.

        """
        max_len = max([len(h) for h in hyps_seq])

        return torch.LongTensor(
            [[self.sos] + ([0] * (max_len - len(h))) + h[1:] for h in hyps_seq],
            device=self.decoder.device,
        )

    def default_beam_search(self, enc_out: torch.Tensor) -> List[Hypothesis]:
        """Beam search implementation without prefix search.

        Modified from https://arxiv.org/pdf/1211.3711.pdf

        Args:
            enc_out: Encoder output sequence. (T, D)

        Returns:
            nbest_hyps: N-best hypothesis.

        """
        beam_k = min(self.beam_size, (self.vocab_size - 1))
        max_t = len(enc_out)

        if self.search_cache is not None:
            kept_hyps = self.search_cache
        else:
            kept_hyps = [
                Hypothesis(
                    score=0.0,
                    yseq=[0],
                    dec_state=self.decoder.init_state(1),
                )
            ]

        for t in range(max_t):
            hyps = kept_hyps
            kept_hyps = []

            while True:
                max_hyp = max(hyps, key=lambda x: x.score)
                hyps.remove(max_hyp)

                label = torch.full(
                    (1, 1),
                    max_hyp.yseq[-1],
                    dtype=torch.long,
                    device=self.decoder.device,
                )
                dec_out, state = self.decoder.score(
                    label,
                    max_hyp.yseq,
                    max_hyp.dec_state,
                )

                logp = torch.log_softmax(
                    self.joint_network(enc_out[t : t + 1, :], dec_out),
                    dim=-1,
                ).squeeze(0)
                top_k = logp[1:].topk(beam_k, dim=-1)

                kept_hyps.append(
                    Hypothesis(
                        score=(max_hyp.score + float(logp[0:1])),
                        yseq=max_hyp.yseq,
                        dec_state=max_hyp.dec_state,
                        lm_state=max_hyp.lm_state,
                    )
                )

                if self.use_lm:
                    lm_scores, lm_state = self.lm.score(
                        torch.LongTensor(
                            [self.sos] + max_hyp.yseq[1:], device=self.decoder.device
                        ),
                        max_hyp.lm_state,
                        None,
                    )
                else:
                    lm_state = max_hyp.lm_state

                for logp, k in zip(*top_k):
                    score = max_hyp.score + float(logp)

                    if self.use_lm:
                        score += self.lm_weight * lm_scores[k + 1]

                    hyps.append(
                        Hypothesis(
                            score=score,
                            yseq=max_hyp.yseq + [int(k + 1)],
                            dec_state=state,
                            lm_state=lm_state,
                        )
                    )

                hyps_max = float(max(hyps, key=lambda x: x.score).score)
                kept_most_prob = sorted(
                    [hyp for hyp in kept_hyps if hyp.score > hyps_max],
                    key=lambda x: x.score,
                )
                if len(kept_most_prob) >= self.beam_size:
                    kept_hyps = kept_most_prob
                    break

        return kept_hyps

    def align_length_sync_decoding(
        self,
        enc_out: torch.Tensor,
    ) -> List[Hypothesis]:
        """Alignment-length synchronous beam search implementation.

        Based on https://ieeexplore.ieee.org/document/9053040

        Args:
            h: Encoder output sequences. (T, D)

        Returns:
            nbest_hyps: N-best hypothesis.

        """
        t_max = int(enc_out.size(0))
        u_max = min(self.u_max, (t_max - 1))

        B = [Hypothesis(yseq=[0], score=0.0, dec_state=self.decoder.init_state(1))]
        final = []

        if self.use_lm:
            B[0].lm_state = self.lm.zero_state()

        for i in range(t_max + u_max):
            A = []

            B_ = []
            B_enc_out = []
            for hyp in B:
                u = len(hyp.yseq) - 1
                t = i - u

                if t > (t_max - 1):
                    continue

                B_.append(hyp)
                B_enc_out.append((t, enc_out[t]))

            if B_:
                beam_enc_out = torch.stack([b[1] for b in B_enc_out])
                beam_dec_out, beam_state = self.decoder.batch_score(B_)

                beam_logp = torch.log_softmax(
                    self.joint_network(beam_enc_out, beam_dec_out),
                    dim=-1,
                )
                beam_topk = beam_logp[:, 1:].topk(self.beam_size, dim=-1)

                if self.use_lm:
                    beam_lm_scores, beam_lm_states = self.lm.batch_score(
                        self.create_lm_batch_inputs([b.yseq for b in B_]),
                        [b.lm_state for b in B_],
                        None,
                    )

                for i, hyp in enumerate(B_):
                    new_hyp = Hypothesis(
                        score=(hyp.score + float(beam_logp[i, 0])),
                        yseq=hyp.yseq[:],
                        dec_state=hyp.dec_state,
                        lm_state=hyp.lm_state,
                    )

                    A.append(new_hyp)

                    if B_enc_out[i][0] == (t_max - 1):
                        final.append(new_hyp)

                    for logp, k in zip(beam_topk[0][i], beam_topk[1][i] + 1):
                        new_hyp = Hypothesis(
                            score=(hyp.score + float(logp)),
                            yseq=(hyp.yseq[:] + [int(k)]),
                            dec_state=self.decoder.select_state(beam_state, i),
                            lm_state=hyp.lm_state,
                        )

                        if self.use_lm:
                            new_hyp.score += self.lm_weight * beam_lm_scores[i, k]
                            new_hyp.lm_state = beam_lm_states[i]

                        A.append(new_hyp)

                B = sorted(A, key=lambda x: x.score, reverse=True)[: self.beam_size]
                B = self.recombine_hyps(B)

        if final:
            return final

        return B

    def time_sync_decoding(self, enc_out: torch.Tensor) -> List[Hypothesis]:
        """Time synchronous beam search implementation.

        Based on https://ieeexplore.ieee.org/document/9053040

        Args:
            enc_out: Encoder output sequence. (T, D)

        Returns:
            nbest_hyps: N-best hypothesis.

        """
        if self.search_cache is not None:
            B = self.search_cache
        else:
            B = [
                Hypothesis(
                    yseq=[0],
                    score=0.0,
                    dec_state=self.decoder.init_state(1),
                )
            ]

            if self.use_lm:
                B[0].lm_state = self.lm.zero_state()

        for enc_out_t in enc_out:
            A = []
            C = B

            enc_out_t = enc_out_t.unsqueeze(0)

            for v in range(self.max_sym_exp):
                D = []

                beam_dec_out, beam_state = self.decoder.batch_score(C)

                beam_logp = torch.log_softmax(
                    self.joint_network(enc_out_t, beam_dec_out),
                    dim=-1,
                )
                beam_topk = beam_logp[:, 1:].topk(self.beam_size, dim=-1)

                seq_A = [h.yseq for h in A]

                for i, hyp in enumerate(C):
                    if hyp.yseq not in seq_A:
                        A.append(
                            Hypothesis(
                                score=(hyp.score + float(beam_logp[i, 0])),
                                yseq=hyp.yseq[:],
                                dec_state=hyp.dec_state,
                                lm_state=hyp.lm_state,
                            )
                        )
                    else:
                        dict_pos = seq_A.index(hyp.yseq)

                        A[dict_pos].score = np.logaddexp(
                            A[dict_pos].score, (hyp.score + float(beam_logp[i, 0]))
                        )

                if v < (self.max_sym_exp - 1):
                    if self.use_lm:
                        beam_lm_scores, beam_lm_states = self.lm.batch_score(
                            self.create_lm_batch_inputs([c.yseq for c in C]),
                            [c.lm_state for c in C],
                            None,
                        )

                    for i, hyp in enumerate(C):
                        for logp, k in zip(beam_topk[0][i], beam_topk[1][i] + 1):
                            new_hyp = Hypothesis(
                                score=(hyp.score + float(logp)),
                                yseq=(hyp.yseq + [int(k)]),
                                dec_state=self.decoder.select_state(beam_state, i),
                                lm_state=hyp.lm_state,
                            )

                            if self.use_lm:
                                new_hyp.score += self.lm_weight * beam_lm_scores[i, k]
                                new_hyp.lm_state = beam_lm_states[i]

                            D.append(new_hyp)

                C = sorted(D, key=lambda x: x.score, reverse=True)[: self.beam_size]

            B = sorted(A, key=lambda x: x.score, reverse=True)[: self.beam_size]

        return B

    def modified_adaptive_expansion_search(
        self,
        enc_out: torch.Tensor,
    ) -> List[ExtendedHypothesis]:
        """Modified version of Adaptive Expansion Search (mAES).

        Based on AES (https://ieeexplore.ieee.org/document/9250505) and
                 NSC (https://arxiv.org/abs/2201.05420).

        Args:
            enc_out: Encoder output sequence. (T, D_enc)

        Returns:
            nbest_hyps: N-best hypothesis.

        """
        if self.search_cache is not None:
            kept_hyps = self.search_cache
        else:
            init_tokens = [
                ExtendedHypothesis(
                    yseq=[0],
                    score=0.0,
                    dec_state=self.decoder.init_state(1),
                )
            ]

            beam_dec_out, beam_state = self.decoder.batch_score(
                init_tokens,
            )

            if self.use_lm:
                beam_lm_scores, beam_lm_states = self.lm.batch_score(
                    self.create_lm_batch_inputs([h.yseq for h in init_tokens]),
                    [h.lm_state for h in init_tokens],
                    None,
                )

                lm_state = beam_lm_states[0]
                lm_score = beam_lm_scores[0]
            else:
                lm_state = None
                lm_score = None

            kept_hyps = [
                ExtendedHypothesis(
                    yseq=[0],
                    score=0.0,
                    dec_state=self.decoder.select_state(beam_state, 0),
                    dec_out=beam_dec_out[0],
                    lm_state=lm_state,
                    lm_score=lm_score,
                )
            ]

        for enc_out_t in enc_out:
            hyps = kept_hyps
            kept_hyps = []

            beam_enc_out = enc_out_t.unsqueeze(0)

            list_b = []
            for n in range(self.nstep):
                beam_dec_out = torch.stack([h.dec_out for h in hyps])

                beam_logp, beam_idx = torch.log_softmax(
                    self.joint_network(beam_enc_out, beam_dec_out),
                    dim=-1,
                ).topk(self.max_candidates, dim=-1)

                k_expansions = self.select_k_expansions(hyps, beam_idx, beam_logp)

                list_exp = []
                for i, hyp in enumerate(hyps):
                    for k, new_score in k_expansions[i]:
                        new_hyp = ExtendedHypothesis(
                            yseq=hyp.yseq[:],
                            score=new_score,
                            dec_out=hyp.dec_out,
                            dec_state=hyp.dec_state,
                            lm_state=hyp.lm_state,
                            lm_score=hyp.lm_score,
                        )

                        if k == 0:
                            list_b.append(new_hyp)
                        else:
                            new_hyp.yseq.append(int(k))

                            if self.use_lm:
                                new_hyp.score += self.lm_weight * float(hyp.lm_score[k])

                            list_exp.append(new_hyp)

                if not list_exp:
                    kept_hyps = sorted(
                        self.recombine_hyps(list_b), key=lambda x: x.score, reverse=True
                    )[: self.beam_size]

                    break
                else:
                    beam_dec_out, beam_state = self.decoder.batch_score(
                        list_exp,
                    )

                    if self.use_lm:
                        beam_lm_scores, beam_lm_states = self.lm.batch_score(
                            self.create_lm_batch_inputs([h.yseq for h in list_exp]),
                            [h.lm_state for h in list_exp],
                            None,
                        )

                    if n < (self.nstep - 1):
                        for i, hyp in enumerate(list_exp):
                            hyp.dec_out = beam_dec_out[i]
                            hyp.dec_state = self.decoder.select_state(beam_state, i)

                            if self.use_lm:
                                hyp.lm_state = beam_lm_states[i]
                                hyp.lm_score = beam_lm_scores[i]

                        hyps = list_exp[:]
                    else:
                        beam_logp = torch.log_softmax(
                            self.joint_network(beam_enc_out, beam_dec_out),
                            dim=-1,
                        )

                        for i, hyp in enumerate(list_exp):
                            hyp.score += float(beam_logp[i, 0])

                            hyp.dec_out = beam_dec_out[i]
                            hyp.dec_state = self.decoder.select_state(beam_state, i)

                            if self.use_lm:
                                hyp.lm_state = beam_lm_states[i]
                                hyp.lm_score = beam_lm_scores[i]

                        kept_hyps = sorted(
                            self.recombine_hyps(list_b + list_exp),
                            key=lambda x: x.score,
                            reverse=True,
                        )[: self.beam_size]

        return kept_hyps