File size: 19,119 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import time
import torch
import logging
from contextlib import contextmanager
from typing import Dict, Optional, Tuple
from distutils.version import LooseVersion

from funasr_detach.register import tables
from funasr_detach.utils import postprocess_utils
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss
from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus
from funasr_detach.models.transformer.utils.nets_utils import get_transducer_task_io
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr_detach.models.transducer.beam_search_transducer import BeamSearchTransducer


if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


@tables.register("model_classes", "Transducer")
class Transducer(torch.nn.Module):
    def __init__(
        self,
        frontend: Optional[str] = None,
        frontend_conf: Optional[Dict] = None,
        specaug: Optional[str] = None,
        specaug_conf: Optional[Dict] = None,
        normalize: str = None,
        normalize_conf: Optional[Dict] = None,
        encoder: str = None,
        encoder_conf: Optional[Dict] = None,
        decoder: str = None,
        decoder_conf: Optional[Dict] = None,
        joint_network: str = None,
        joint_network_conf: Optional[Dict] = None,
        transducer_weight: float = 1.0,
        fastemit_lambda: float = 0.0,
        auxiliary_ctc_weight: float = 0.0,
        auxiliary_ctc_dropout_rate: float = 0.0,
        auxiliary_lm_loss_weight: float = 0.0,
        auxiliary_lm_loss_smoothing: float = 0.0,
        input_size: int = 80,
        vocab_size: int = -1,
        ignore_id: int = -1,
        blank_id: int = 0,
        sos: int = 1,
        eos: int = 2,
        lsm_weight: float = 0.0,
        length_normalized_loss: bool = False,
        # report_cer: bool = True,
        # report_wer: bool = True,
        # sym_space: str = "<space>",
        # sym_blank: str = "<blank>",
        # extract_feats_in_collect_stats: bool = True,
        share_embedding: bool = False,
        # preencoder: Optional[AbsPreEncoder] = None,
        # postencoder: Optional[AbsPostEncoder] = None,
        **kwargs,
    ):

        super().__init__()

        if specaug is not None:
            specaug_class = tables.specaug_classes.get(specaug)
            specaug = specaug_class(**specaug_conf)
        if normalize is not None:
            normalize_class = tables.normalize_classes.get(normalize)
            normalize = normalize_class(**normalize_conf)
        encoder_class = tables.encoder_classes.get(encoder)
        encoder = encoder_class(input_size=input_size, **encoder_conf)
        encoder_output_size = encoder.output_size()

        decoder_class = tables.decoder_classes.get(decoder)
        decoder = decoder_class(
            vocab_size=vocab_size,
            **decoder_conf,
        )
        decoder_output_size = decoder.output_size

        joint_network_class = tables.joint_network_classes.get(joint_network)
        joint_network = joint_network_class(
            vocab_size,
            encoder_output_size,
            decoder_output_size,
            **joint_network_conf,
        )

        self.criterion_transducer = None
        self.error_calculator = None

        self.use_auxiliary_ctc = auxiliary_ctc_weight > 0
        self.use_auxiliary_lm_loss = auxiliary_lm_loss_weight > 0

        if self.use_auxiliary_ctc:
            self.ctc_lin = torch.nn.Linear(encoder.output_size(), vocab_size)
            self.ctc_dropout_rate = auxiliary_ctc_dropout_rate

        if self.use_auxiliary_lm_loss:
            self.lm_lin = torch.nn.Linear(decoder.output_size, vocab_size)
            self.lm_loss_smoothing = auxiliary_lm_loss_smoothing

        self.transducer_weight = transducer_weight
        self.fastemit_lambda = fastemit_lambda

        self.auxiliary_ctc_weight = auxiliary_ctc_weight
        self.auxiliary_lm_loss_weight = auxiliary_lm_loss_weight
        self.blank_id = blank_id
        self.sos = sos if sos is not None else vocab_size - 1
        self.eos = eos if eos is not None else vocab_size - 1
        self.vocab_size = vocab_size
        self.ignore_id = ignore_id
        self.frontend = frontend
        self.specaug = specaug
        self.normalize = normalize
        self.encoder = encoder
        self.decoder = decoder
        self.joint_network = joint_network

        self.criterion_att = LabelSmoothingLoss(
            size=vocab_size,
            padding_idx=ignore_id,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )

        self.length_normalized_loss = length_normalized_loss
        self.beam_search = None
        self.ctc = None
        self.ctc_weight = 0.0

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
        **kwargs,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
        """Encoder + Decoder + Calc loss
        Args:
                speech: (Batch, Length, ...)
                speech_lengths: (Batch, )
                text: (Batch, Length)
                text_lengths: (Batch,)
        """
        if len(text_lengths.size()) > 1:
            text_lengths = text_lengths[:, 0]
        if len(speech_lengths.size()) > 1:
            speech_lengths = speech_lengths[:, 0]

        batch_size = speech.shape[0]
        # 1. Encoder
        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
        if (
            hasattr(self.encoder, "overlap_chunk_cls")
            and self.encoder.overlap_chunk_cls is not None
        ):
            encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(
                encoder_out, encoder_out_lens, chunk_outs=None
            )
        # 2. Transducer-related I/O preparation
        decoder_in, target, t_len, u_len = get_transducer_task_io(
            text,
            encoder_out_lens,
            ignore_id=self.ignore_id,
        )

        # 3. Decoder
        self.decoder.set_device(encoder_out.device)
        decoder_out = self.decoder(decoder_in, u_len)

        # 4. Joint Network
        joint_out = self.joint_network(
            encoder_out.unsqueeze(2), decoder_out.unsqueeze(1)
        )

        # 5. Losses
        loss_trans, cer_trans, wer_trans = self._calc_transducer_loss(
            encoder_out,
            joint_out,
            target,
            t_len,
            u_len,
        )

        loss_ctc, loss_lm = 0.0, 0.0

        if self.use_auxiliary_ctc:
            loss_ctc = self._calc_ctc_loss(
                encoder_out,
                target,
                t_len,
                u_len,
            )

        if self.use_auxiliary_lm_loss:
            loss_lm = self._calc_lm_loss(decoder_out, target)

        loss = (
            self.transducer_weight * loss_trans
            + self.auxiliary_ctc_weight * loss_ctc
            + self.auxiliary_lm_loss_weight * loss_lm
        )

        stats = dict(
            loss=loss.detach(),
            loss_transducer=loss_trans.detach(),
            aux_ctc_loss=loss_ctc.detach() if loss_ctc > 0.0 else None,
            aux_lm_loss=loss_lm.detach() if loss_lm > 0.0 else None,
            cer_transducer=cer_trans,
            wer_transducer=wer_trans,
        )

        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)

        return loss, stats, weight

    def encode(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        **kwargs,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Frontend + Encoder. Note that this method is used by asr_inference.py
        Args:
                speech: (Batch, Length, ...)
                speech_lengths: (Batch, )
                ind: int
        """
        with autocast(False):

            # Data augmentation
            if self.specaug is not None and self.training:
                speech, speech_lengths = self.specaug(speech, speech_lengths)

            # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
            if self.normalize is not None:
                speech, speech_lengths = self.normalize(speech, speech_lengths)

        # Forward encoder
        # feats: (Batch, Length, Dim)
        # -> encoder_out: (Batch, Length2, Dim2)
        encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths)
        intermediate_outs = None
        if isinstance(encoder_out, tuple):
            intermediate_outs = encoder_out[1]
            encoder_out = encoder_out[0]

        if intermediate_outs is not None:
            return (encoder_out, intermediate_outs), encoder_out_lens

        return encoder_out, encoder_out_lens

    def _calc_transducer_loss(
        self,
        encoder_out: torch.Tensor,
        joint_out: torch.Tensor,
        target: torch.Tensor,
        t_len: torch.Tensor,
        u_len: torch.Tensor,
    ) -> Tuple[torch.Tensor, Optional[float], Optional[float]]:
        """Compute Transducer loss.

        Args:
            encoder_out: Encoder output sequences. (B, T, D_enc)
            joint_out: Joint Network output sequences (B, T, U, D_joint)
            target: Target label ID sequences. (B, L)
            t_len: Encoder output sequences lengths. (B,)
            u_len: Target label ID sequences lengths. (B,)

        Return:
            loss_transducer: Transducer loss value.
            cer_transducer: Character error rate for Transducer.
            wer_transducer: Word Error Rate for Transducer.

        """
        if self.criterion_transducer is None:
            try:
                from warp_rnnt import rnnt_loss as RNNTLoss

                self.criterion_transducer = RNNTLoss

            except ImportError:
                logging.error(
                    "warp-rnnt was not installed."
                    "Please consult the installation documentation."
                )
                exit(1)

        log_probs = torch.log_softmax(joint_out, dim=-1)

        loss_transducer = self.criterion_transducer(
            log_probs,
            target,
            t_len,
            u_len,
            reduction="mean",
            blank=self.blank_id,
            fastemit_lambda=self.fastemit_lambda,
            gather=True,
        )

        if not self.training and (self.report_cer or self.report_wer):
            if self.error_calculator is None:
                from funasr_detach.metrics import (
                    ErrorCalculatorTransducer as ErrorCalculator,
                )

                self.error_calculator = ErrorCalculator(
                    self.decoder,
                    self.joint_network,
                    self.token_list,
                    self.sym_space,
                    self.sym_blank,
                    report_cer=self.report_cer,
                    report_wer=self.report_wer,
                )

            cer_transducer, wer_transducer = self.error_calculator(
                encoder_out, target, t_len
            )

            return loss_transducer, cer_transducer, wer_transducer

        return loss_transducer, None, None

    def _calc_ctc_loss(
        self,
        encoder_out: torch.Tensor,
        target: torch.Tensor,
        t_len: torch.Tensor,
        u_len: torch.Tensor,
    ) -> torch.Tensor:
        """Compute CTC loss.

        Args:
            encoder_out: Encoder output sequences. (B, T, D_enc)
            target: Target label ID sequences. (B, L)
            t_len: Encoder output sequences lengths. (B,)
            u_len: Target label ID sequences lengths. (B,)

        Return:
            loss_ctc: CTC loss value.

        """
        ctc_in = self.ctc_lin(
            torch.nn.functional.dropout(encoder_out, p=self.ctc_dropout_rate)
        )
        ctc_in = torch.log_softmax(ctc_in.transpose(0, 1), dim=-1)

        target_mask = target != 0
        ctc_target = target[target_mask].cpu()

        with torch.backends.cudnn.flags(deterministic=True):
            loss_ctc = torch.nn.functional.ctc_loss(
                ctc_in,
                ctc_target,
                t_len,
                u_len,
                zero_infinity=True,
                reduction="sum",
            )
        loss_ctc /= target.size(0)

        return loss_ctc

    def _calc_lm_loss(
        self,
        decoder_out: torch.Tensor,
        target: torch.Tensor,
    ) -> torch.Tensor:
        """Compute LM loss.

        Args:
            decoder_out: Decoder output sequences. (B, U, D_dec)
            target: Target label ID sequences. (B, L)

        Return:
            loss_lm: LM loss value.

        """
        lm_loss_in = self.lm_lin(decoder_out[:, :-1, :]).view(-1, self.vocab_size)
        lm_target = target.view(-1).type(torch.int64)

        with torch.no_grad():
            true_dist = lm_loss_in.clone()
            true_dist.fill_(self.lm_loss_smoothing / (self.vocab_size - 1))

            # Ignore blank ID (0)
            ignore = lm_target == 0
            lm_target = lm_target.masked_fill(ignore, 0)

            true_dist.scatter_(1, lm_target.unsqueeze(1), (1 - self.lm_loss_smoothing))

        loss_lm = torch.nn.functional.kl_div(
            torch.log_softmax(lm_loss_in, dim=1),
            true_dist,
            reduction="none",
        )
        loss_lm = loss_lm.masked_fill(ignore.unsqueeze(1), 0).sum() / decoder_out.size(
            0
        )

        return loss_lm

    def init_beam_search(
        self,
        **kwargs,
    ):

        # 1. Build ASR model
        scorers = {}

        if self.ctc != None:
            ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos)
            scorers.update(ctc=ctc)
        token_list = kwargs.get("token_list")
        scorers.update(
            length_bonus=LengthBonus(len(token_list)),
        )

        # 3. Build ngram model
        # ngram is not supported now
        ngram = None
        scorers["ngram"] = ngram

        beam_search = BeamSearchTransducer(
            self.decoder,
            self.joint_network,
            kwargs.get("beam_size", 2),
            nbest=1,
        )
        # beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
        # for scorer in scorers.values():
        #     if isinstance(scorer, torch.nn.Module):
        #         scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
        self.beam_search = beam_search

    def inference(
        self,
        data_in: list,
        data_lengths: list = None,
        key: list = None,
        tokenizer=None,
        **kwargs,
    ):

        if kwargs.get("batch_size", 1) > 1:
            raise NotImplementedError("batch decoding is not implemented")

        # init beamsearch
        is_use_ctc = (
            kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
        )
        is_use_lm = (
            kwargs.get("lm_weight", 0.0) > 0.00001
            and kwargs.get("lm_file", None) is not None
        )
        # if self.beam_search is None and (is_use_lm or is_use_ctc):
        logging.info("enable beam_search")
        self.init_beam_search(**kwargs)
        self.nbest = kwargs.get("nbest", 1)

        meta_data = {}
        # extract fbank feats
        time1 = time.perf_counter()
        audio_sample_list = load_audio_text_image_video(
            data_in, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000)
        )
        time2 = time.perf_counter()
        meta_data["load_data"] = f"{time2 - time1:0.3f}"
        speech, speech_lengths = extract_fbank(
            audio_sample_list,
            data_type=kwargs.get("data_type", "sound"),
            frontend=self.frontend,
        )
        time3 = time.perf_counter()
        meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
        meta_data["batch_data_time"] = (
            speech_lengths.sum().item()
            * self.frontend.frame_shift
            * self.frontend.lfr_n
            / 1000
        )

        speech = speech.to(device=kwargs["device"])
        speech_lengths = speech_lengths.to(device=kwargs["device"])

        # Encoder
        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
        if isinstance(encoder_out, tuple):
            encoder_out = encoder_out[0]

        # c. Passed the encoder result and the beam search
        nbest_hyps = self.beam_search(encoder_out[0], is_final=True)
        nbest_hyps = nbest_hyps[: self.nbest]

        results = []
        b, n, d = encoder_out.size()
        for i in range(b):

            for nbest_idx, hyp in enumerate(nbest_hyps):
                ibest_writer = None
                if kwargs.get("output_dir") is not None:
                    if not hasattr(self, "writer"):
                        self.writer = DatadirWriter(kwargs.get("output_dir"))
                    ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]
                # remove sos/eos and get results
                last_pos = -1
                if isinstance(hyp.yseq, list):
                    token_int = hyp.yseq  # [1:last_pos]
                else:
                    token_int = hyp.yseq  # [1:last_pos].tolist()

                # remove blank symbol id, which is assumed to be 0
                token_int = list(
                    filter(
                        lambda x: x != self.eos
                        and x != self.sos
                        and x != self.blank_id,
                        token_int,
                    )
                )

                # Change integer-ids to tokens
                token = tokenizer.ids2tokens(token_int)
                text = tokenizer.tokens2text(token)

                text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
                result_i = {
                    "key": key[i],
                    "token": token,
                    "text": text,
                    "text_postprocessed": text_postprocessed,
                }
                results.append(result_i)

                if ibest_writer is not None:
                    ibest_writer["token"][key[i]] = " ".join(token)
                    ibest_writer["text"][key[i]] = text
                    ibest_writer["text_postprocessed"][key[i]] = text_postprocessed

        return results, meta_data