File size: 8,557 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import torch
from typing import List, Optional, Tuple

from funasr_detach.register import tables
from funasr_detach.models.specaug.specaug import SpecAug
from funasr_detach.models.transducer.beam_search_transducer import Hypothesis


@tables.register("decoder_classes", "rnnt_decoder")
class RNNTDecoder(torch.nn.Module):
    """RNN decoder module.

    Args:
        vocab_size: Vocabulary size.
        embed_size: Embedding size.
        hidden_size: Hidden size..
        rnn_type: Decoder layers type.
        num_layers: Number of decoder layers.
        dropout_rate: Dropout rate for decoder layers.
        embed_dropout_rate: Dropout rate for embedding layer.
        embed_pad: Embedding padding symbol ID.

    """

    def __init__(
        self,
        vocab_size: int,
        embed_size: int = 256,
        hidden_size: int = 256,
        rnn_type: str = "lstm",
        num_layers: int = 1,
        dropout_rate: float = 0.0,
        embed_dropout_rate: float = 0.0,
        embed_pad: int = 0,
        use_embed_mask: bool = False,
    ) -> None:
        """Construct a RNNDecoder object."""
        super().__init__()

        if rnn_type not in ("lstm", "gru"):
            raise ValueError(f"Not supported: rnn_type={rnn_type}")

        self.embed = torch.nn.Embedding(vocab_size, embed_size, padding_idx=embed_pad)
        self.dropout_embed = torch.nn.Dropout(p=embed_dropout_rate)

        rnn_class = torch.nn.LSTM if rnn_type == "lstm" else torch.nn.GRU

        self.rnn = torch.nn.ModuleList(
            [rnn_class(embed_size, hidden_size, 1, batch_first=True)]
        )

        for _ in range(1, num_layers):
            self.rnn += [rnn_class(hidden_size, hidden_size, 1, batch_first=True)]

        self.dropout_rnn = torch.nn.ModuleList(
            [torch.nn.Dropout(p=dropout_rate) for _ in range(num_layers)]
        )

        self.dlayers = num_layers
        self.dtype = rnn_type

        self.output_size = hidden_size
        self.vocab_size = vocab_size

        self.device = next(self.parameters()).device
        self.score_cache = {}

        self.use_embed_mask = use_embed_mask
        if self.use_embed_mask:
            self._embed_mask = SpecAug(
                time_mask_width_range=3,
                num_time_mask=4,
                apply_freq_mask=False,
                apply_time_warp=False,
            )

    def forward(
        self,
        labels: torch.Tensor,
        label_lens: torch.Tensor,
        states: Optional[Tuple[torch.Tensor, Optional[torch.Tensor]]] = None,
    ) -> torch.Tensor:
        """Encode source label sequences.

        Args:
            labels: Label ID sequences. (B, L)
            states: Decoder hidden states.
                      ((N, B, D_dec), (N, B, D_dec) or None) or None

        Returns:
            dec_out: Decoder output sequences. (B, U, D_dec)

        """
        if states is None:
            states = self.init_state(labels.size(0))

        dec_embed = self.dropout_embed(self.embed(labels))
        if self.use_embed_mask and self.training:
            dec_embed = self._embed_mask(dec_embed, label_lens)[0]
        dec_out, states = self.rnn_forward(dec_embed, states)
        return dec_out

    def rnn_forward(
        self,
        x: torch.Tensor,
        state: Tuple[torch.Tensor, Optional[torch.Tensor]],
    ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]]:
        """Encode source label sequences.

        Args:
            x: RNN input sequences. (B, D_emb)
            state: Decoder hidden states. ((N, B, D_dec), (N, B, D_dec) or None)

        Returns:
            x: RNN output sequences. (B, D_dec)
            (h_next, c_next): Decoder hidden states.
                                (N, B, D_dec), (N, B, D_dec) or None)

        """
        h_prev, c_prev = state
        h_next, c_next = self.init_state(x.size(0))

        for layer in range(self.dlayers):
            if self.dtype == "lstm":
                x, (h_next[layer : layer + 1], c_next[layer : layer + 1]) = self.rnn[
                    layer
                ](x, hx=(h_prev[layer : layer + 1], c_prev[layer : layer + 1]))
            else:
                x, h_next[layer : layer + 1] = self.rnn[layer](
                    x, hx=h_prev[layer : layer + 1]
                )

            x = self.dropout_rnn[layer](x)

        return x, (h_next, c_next)

    def score(
        self,
        label: torch.Tensor,
        label_sequence: List[int],
        dec_state: Tuple[torch.Tensor, Optional[torch.Tensor]],
    ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]]:
        """One-step forward hypothesis.

        Args:
            label: Previous label. (1, 1)
            label_sequence: Current label sequence.
            dec_state: Previous decoder hidden states.
                         ((N, 1, D_dec), (N, 1, D_dec) or None)

        Returns:
            dec_out: Decoder output sequence. (1, D_dec)
            dec_state: Decoder hidden states.
                         ((N, 1, D_dec), (N, 1, D_dec) or None)

        """
        str_labels = "_".join(map(str, label_sequence))

        if str_labels in self.score_cache:
            dec_out, dec_state = self.score_cache[str_labels]
        else:
            dec_embed = self.embed(label)
            dec_out, dec_state = self.rnn_forward(dec_embed, dec_state)

            self.score_cache[str_labels] = (dec_out, dec_state)

        return dec_out[0], dec_state

    def batch_score(
        self,
        hyps: List[Hypothesis],
    ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]]:
        """One-step forward hypotheses.

        Args:
            hyps: Hypotheses.

        Returns:
            dec_out: Decoder output sequences. (B, D_dec)
            states: Decoder hidden states. ((N, B, D_dec), (N, B, D_dec) or None)

        """
        labels = torch.LongTensor([[h.yseq[-1]] for h in hyps], device=self.device)
        dec_embed = self.embed(labels)

        states = self.create_batch_states([h.dec_state for h in hyps])
        dec_out, states = self.rnn_forward(dec_embed, states)

        return dec_out.squeeze(1), states

    def set_device(self, device: torch.device) -> None:
        """Set GPU device to use.

        Args:
            device: Device ID.

        """
        self.device = device

    def init_state(
        self, batch_size: int
    ) -> Tuple[torch.Tensor, Optional[torch.tensor]]:
        """Initialize decoder states.

        Args:
            batch_size: Batch size.

        Returns:
            : Initial decoder hidden states. ((N, B, D_dec), (N, B, D_dec) or None)

        """
        h_n = torch.zeros(
            self.dlayers,
            batch_size,
            self.output_size,
            device=self.device,
        )

        if self.dtype == "lstm":
            c_n = torch.zeros(
                self.dlayers,
                batch_size,
                self.output_size,
                device=self.device,
            )

            return (h_n, c_n)

        return (h_n, None)

    def select_state(
        self, states: Tuple[torch.Tensor, Optional[torch.Tensor]], idx: int
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """Get specified ID state from decoder hidden states.

        Args:
            states: Decoder hidden states. ((N, B, D_dec), (N, B, D_dec) or None)
            idx: State ID to extract.

        Returns:
            : Decoder hidden state for given ID. ((N, 1, D_dec), (N, 1, D_dec) or None)

        """
        return (
            states[0][:, idx : idx + 1, :],
            states[1][:, idx : idx + 1, :] if self.dtype == "lstm" else None,
        )

    def create_batch_states(
        self,
        new_states: List[Tuple[torch.Tensor, Optional[torch.Tensor]]],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """Create decoder hidden states.

        Args:
            new_states: Decoder hidden states. [N x ((1, D_dec), (1, D_dec) or None)]

        Returns:
            states: Decoder hidden states. ((N, B, D_dec), (N, B, D_dec) or None)

        """
        return (
            torch.cat([s[0] for s in new_states], dim=1),
            (
                torch.cat([s[1] for s in new_states], dim=1)
                if self.dtype == "lstm"
                else None
            ),
        )