Spaces:
Runtime error
Runtime error
File size: 8,557 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
from typing import List, Optional, Tuple
from funasr_detach.register import tables
from funasr_detach.models.specaug.specaug import SpecAug
from funasr_detach.models.transducer.beam_search_transducer import Hypothesis
@tables.register("decoder_classes", "rnnt_decoder")
class RNNTDecoder(torch.nn.Module):
"""RNN decoder module.
Args:
vocab_size: Vocabulary size.
embed_size: Embedding size.
hidden_size: Hidden size..
rnn_type: Decoder layers type.
num_layers: Number of decoder layers.
dropout_rate: Dropout rate for decoder layers.
embed_dropout_rate: Dropout rate for embedding layer.
embed_pad: Embedding padding symbol ID.
"""
def __init__(
self,
vocab_size: int,
embed_size: int = 256,
hidden_size: int = 256,
rnn_type: str = "lstm",
num_layers: int = 1,
dropout_rate: float = 0.0,
embed_dropout_rate: float = 0.0,
embed_pad: int = 0,
use_embed_mask: bool = False,
) -> None:
"""Construct a RNNDecoder object."""
super().__init__()
if rnn_type not in ("lstm", "gru"):
raise ValueError(f"Not supported: rnn_type={rnn_type}")
self.embed = torch.nn.Embedding(vocab_size, embed_size, padding_idx=embed_pad)
self.dropout_embed = torch.nn.Dropout(p=embed_dropout_rate)
rnn_class = torch.nn.LSTM if rnn_type == "lstm" else torch.nn.GRU
self.rnn = torch.nn.ModuleList(
[rnn_class(embed_size, hidden_size, 1, batch_first=True)]
)
for _ in range(1, num_layers):
self.rnn += [rnn_class(hidden_size, hidden_size, 1, batch_first=True)]
self.dropout_rnn = torch.nn.ModuleList(
[torch.nn.Dropout(p=dropout_rate) for _ in range(num_layers)]
)
self.dlayers = num_layers
self.dtype = rnn_type
self.output_size = hidden_size
self.vocab_size = vocab_size
self.device = next(self.parameters()).device
self.score_cache = {}
self.use_embed_mask = use_embed_mask
if self.use_embed_mask:
self._embed_mask = SpecAug(
time_mask_width_range=3,
num_time_mask=4,
apply_freq_mask=False,
apply_time_warp=False,
)
def forward(
self,
labels: torch.Tensor,
label_lens: torch.Tensor,
states: Optional[Tuple[torch.Tensor, Optional[torch.Tensor]]] = None,
) -> torch.Tensor:
"""Encode source label sequences.
Args:
labels: Label ID sequences. (B, L)
states: Decoder hidden states.
((N, B, D_dec), (N, B, D_dec) or None) or None
Returns:
dec_out: Decoder output sequences. (B, U, D_dec)
"""
if states is None:
states = self.init_state(labels.size(0))
dec_embed = self.dropout_embed(self.embed(labels))
if self.use_embed_mask and self.training:
dec_embed = self._embed_mask(dec_embed, label_lens)[0]
dec_out, states = self.rnn_forward(dec_embed, states)
return dec_out
def rnn_forward(
self,
x: torch.Tensor,
state: Tuple[torch.Tensor, Optional[torch.Tensor]],
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]]:
"""Encode source label sequences.
Args:
x: RNN input sequences. (B, D_emb)
state: Decoder hidden states. ((N, B, D_dec), (N, B, D_dec) or None)
Returns:
x: RNN output sequences. (B, D_dec)
(h_next, c_next): Decoder hidden states.
(N, B, D_dec), (N, B, D_dec) or None)
"""
h_prev, c_prev = state
h_next, c_next = self.init_state(x.size(0))
for layer in range(self.dlayers):
if self.dtype == "lstm":
x, (h_next[layer : layer + 1], c_next[layer : layer + 1]) = self.rnn[
layer
](x, hx=(h_prev[layer : layer + 1], c_prev[layer : layer + 1]))
else:
x, h_next[layer : layer + 1] = self.rnn[layer](
x, hx=h_prev[layer : layer + 1]
)
x = self.dropout_rnn[layer](x)
return x, (h_next, c_next)
def score(
self,
label: torch.Tensor,
label_sequence: List[int],
dec_state: Tuple[torch.Tensor, Optional[torch.Tensor]],
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]]:
"""One-step forward hypothesis.
Args:
label: Previous label. (1, 1)
label_sequence: Current label sequence.
dec_state: Previous decoder hidden states.
((N, 1, D_dec), (N, 1, D_dec) or None)
Returns:
dec_out: Decoder output sequence. (1, D_dec)
dec_state: Decoder hidden states.
((N, 1, D_dec), (N, 1, D_dec) or None)
"""
str_labels = "_".join(map(str, label_sequence))
if str_labels in self.score_cache:
dec_out, dec_state = self.score_cache[str_labels]
else:
dec_embed = self.embed(label)
dec_out, dec_state = self.rnn_forward(dec_embed, dec_state)
self.score_cache[str_labels] = (dec_out, dec_state)
return dec_out[0], dec_state
def batch_score(
self,
hyps: List[Hypothesis],
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]]:
"""One-step forward hypotheses.
Args:
hyps: Hypotheses.
Returns:
dec_out: Decoder output sequences. (B, D_dec)
states: Decoder hidden states. ((N, B, D_dec), (N, B, D_dec) or None)
"""
labels = torch.LongTensor([[h.yseq[-1]] for h in hyps], device=self.device)
dec_embed = self.embed(labels)
states = self.create_batch_states([h.dec_state for h in hyps])
dec_out, states = self.rnn_forward(dec_embed, states)
return dec_out.squeeze(1), states
def set_device(self, device: torch.device) -> None:
"""Set GPU device to use.
Args:
device: Device ID.
"""
self.device = device
def init_state(
self, batch_size: int
) -> Tuple[torch.Tensor, Optional[torch.tensor]]:
"""Initialize decoder states.
Args:
batch_size: Batch size.
Returns:
: Initial decoder hidden states. ((N, B, D_dec), (N, B, D_dec) or None)
"""
h_n = torch.zeros(
self.dlayers,
batch_size,
self.output_size,
device=self.device,
)
if self.dtype == "lstm":
c_n = torch.zeros(
self.dlayers,
batch_size,
self.output_size,
device=self.device,
)
return (h_n, c_n)
return (h_n, None)
def select_state(
self, states: Tuple[torch.Tensor, Optional[torch.Tensor]], idx: int
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Get specified ID state from decoder hidden states.
Args:
states: Decoder hidden states. ((N, B, D_dec), (N, B, D_dec) or None)
idx: State ID to extract.
Returns:
: Decoder hidden state for given ID. ((N, 1, D_dec), (N, 1, D_dec) or None)
"""
return (
states[0][:, idx : idx + 1, :],
states[1][:, idx : idx + 1, :] if self.dtype == "lstm" else None,
)
def create_batch_states(
self,
new_states: List[Tuple[torch.Tensor, Optional[torch.Tensor]]],
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Create decoder hidden states.
Args:
new_states: Decoder hidden states. [N x ((1, D_dec), (1, D_dec) or None)]
Returns:
states: Decoder hidden states. ((N, B, D_dec), (N, B, D_dec) or None)
"""
return (
torch.cat([s[0] for s in new_states], dim=1),
(
torch.cat([s[1] for s in new_states], dim=1)
if self.dtype == "lstm"
else None
),
)
|