File size: 41,774 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import time
import torch
import logging
from torch.cuda.amp import autocast
from typing import Union, Dict, List, Tuple, Optional

from funasr_detach.register import tables
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.utils import postprocess_utils
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.models.paraformer.cif_predictor import mae_loss
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr_detach.models.scama.utils import sequence_mask


@tables.register("model_classes", "UniASR")
class UniASR(torch.nn.Module):
    """
    Author: Speech Lab of DAMO Academy, Alibaba Group
    """

    def __init__(
        self,
        specaug: str = None,
        specaug_conf: dict = None,
        normalize: str = None,
        normalize_conf: dict = None,
        encoder: str = None,
        encoder_conf: dict = None,
        encoder2: str = None,
        encoder2_conf: dict = None,
        decoder: str = None,
        decoder_conf: dict = None,
        decoder2: str = None,
        decoder2_conf: dict = None,
        predictor: str = None,
        predictor_conf: dict = None,
        predictor_bias: int = 0,
        predictor_weight: float = 0.0,
        predictor2: str = None,
        predictor2_conf: dict = None,
        predictor2_bias: int = 0,
        predictor2_weight: float = 0.0,
        ctc: str = None,
        ctc_conf: dict = None,
        ctc_weight: float = 0.5,
        ctc2: str = None,
        ctc2_conf: dict = None,
        ctc2_weight: float = 0.5,
        decoder_attention_chunk_type: str = "chunk",
        decoder_attention_chunk_type2: str = "chunk",
        stride_conv=None,
        stride_conv_conf: dict = None,
        loss_weight_model1: float = 0.5,
        input_size: int = 80,
        vocab_size: int = -1,
        ignore_id: int = -1,
        blank_id: int = 0,
        sos: int = 1,
        eos: int = 2,
        lsm_weight: float = 0.0,
        length_normalized_loss: bool = False,
        share_embedding: bool = False,
        **kwargs,
    ):
        super().__init__()

        if specaug is not None:
            specaug_class = tables.specaug_classes.get(specaug)
            specaug = specaug_class(**specaug_conf)
        if normalize is not None:
            normalize_class = tables.normalize_classes.get(normalize)
            normalize = normalize_class(**normalize_conf)

        encoder_class = tables.encoder_classes.get(encoder)
        encoder = encoder_class(input_size=input_size, **encoder_conf)
        encoder_output_size = encoder.output_size()

        decoder_class = tables.decoder_classes.get(decoder)
        decoder = decoder_class(
            vocab_size=vocab_size,
            encoder_output_size=encoder_output_size,
            **decoder_conf,
        )
        predictor_class = tables.predictor_classes.get(predictor)
        predictor = predictor_class(**predictor_conf)

        from funasr_detach.models.transformer.utils.subsampling import Conv1dSubsampling

        stride_conv = Conv1dSubsampling(
            **stride_conv_conf,
            idim=input_size + encoder_output_size,
            odim=input_size + encoder_output_size,
        )
        stride_conv_output_size = stride_conv.output_size()

        encoder_class = tables.encoder_classes.get(encoder2)
        encoder2 = encoder_class(input_size=stride_conv_output_size, **encoder2_conf)
        encoder2_output_size = encoder2.output_size()

        decoder_class = tables.decoder_classes.get(decoder2)
        decoder2 = decoder_class(
            vocab_size=vocab_size,
            encoder_output_size=encoder2_output_size,
            **decoder2_conf,
        )
        predictor_class = tables.predictor_classes.get(predictor2)
        predictor2 = predictor_class(**predictor2_conf)

        self.blank_id = blank_id
        self.sos = sos
        self.eos = eos
        self.vocab_size = vocab_size
        self.ignore_id = ignore_id
        self.ctc_weight = ctc_weight
        self.ctc2_weight = ctc2_weight

        self.specaug = specaug
        self.normalize = normalize

        self.encoder = encoder

        self.error_calculator = None

        self.decoder = decoder
        self.ctc = None
        self.ctc2 = None

        self.criterion_att = LabelSmoothingLoss(
            size=vocab_size,
            padding_idx=ignore_id,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )

        self.predictor = predictor
        self.predictor_weight = predictor_weight
        self.criterion_pre = mae_loss(normalize_length=length_normalized_loss)
        self.encoder1_encoder2_joint_training = kwargs.get(
            "encoder1_encoder2_joint_training", True
        )

        if self.encoder.overlap_chunk_cls is not None:
            from funasr_detach.models.scama.chunk_utilis import (
                build_scama_mask_for_cross_attention_decoder,
            )

            self.build_scama_mask_for_cross_attention_decoder_fn = (
                build_scama_mask_for_cross_attention_decoder
            )
            self.decoder_attention_chunk_type = decoder_attention_chunk_type

        self.encoder2 = encoder2
        self.decoder2 = decoder2
        self.ctc2_weight = ctc2_weight

        self.predictor2 = predictor2
        self.predictor2_weight = predictor2_weight
        self.decoder_attention_chunk_type2 = decoder_attention_chunk_type2
        self.stride_conv = stride_conv
        self.loss_weight_model1 = loss_weight_model1
        if self.encoder2.overlap_chunk_cls is not None:
            from funasr_detach.models.scama.chunk_utilis import (
                build_scama_mask_for_cross_attention_decoder,
            )

            self.build_scama_mask_for_cross_attention_decoder_fn2 = (
                build_scama_mask_for_cross_attention_decoder
            )
            self.decoder_attention_chunk_type2 = decoder_attention_chunk_type2

        self.length_normalized_loss = length_normalized_loss
        self.enable_maas_finetune = kwargs.get("enable_maas_finetune", False)
        self.freeze_encoder2 = kwargs.get("freeze_encoder2", False)
        self.beam_search = None

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
        **kwargs,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
        """Frontend + Encoder + Decoder + Calc loss
        Args:
                        speech: (Batch, Length, ...)
                        speech_lengths: (Batch, )
                        text: (Batch, Length)
                        text_lengths: (Batch,)
        """
        decoding_ind = kwargs.get("decoding_ind", None)
        if len(text_lengths.size()) > 1:
            text_lengths = text_lengths[:, 0]
        if len(speech_lengths.size()) > 1:
            speech_lengths = speech_lengths[:, 0]

        batch_size = speech.shape[0]

        ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind)
        # 1. Encoder
        if self.enable_maas_finetune:
            with torch.no_grad():
                speech_raw, encoder_out, encoder_out_lens = self.encode(
                    speech, speech_lengths, ind=ind
                )
        else:
            speech_raw, encoder_out, encoder_out_lens = self.encode(
                speech, speech_lengths, ind=ind
            )

        loss_att, acc_att, cer_att, wer_att = None, None, None, None
        loss_ctc, cer_ctc = None, None
        stats = dict()
        loss_pre = None
        loss, loss1, loss2 = 0.0, 0.0, 0.0

        if self.loss_weight_model1 > 0.0:
            ## model1
            # 1. CTC branch
            if self.enable_maas_finetune:
                with torch.no_grad():

                    loss_att, acc_att, cer_att, wer_att, loss_pre = (
                        self._calc_att_predictor_loss(
                            encoder_out, encoder_out_lens, text, text_lengths
                        )
                    )

                    loss = loss_att + loss_pre * self.predictor_weight

                    # Collect Attn branch stats
                    stats["loss_att"] = (
                        loss_att.detach() if loss_att is not None else None
                    )
                    stats["acc"] = acc_att
                    stats["cer"] = cer_att
                    stats["wer"] = wer_att
                    stats["loss_pre"] = (
                        loss_pre.detach().cpu() if loss_pre is not None else None
                    )
            else:

                loss_att, acc_att, cer_att, wer_att, loss_pre = (
                    self._calc_att_predictor_loss(
                        encoder_out, encoder_out_lens, text, text_lengths
                    )
                )

                loss = loss_att + loss_pre * self.predictor_weight

                # Collect Attn branch stats
                stats["loss_att"] = loss_att.detach() if loss_att is not None else None
                stats["acc"] = acc_att
                stats["cer"] = cer_att
                stats["wer"] = wer_att
                stats["loss_pre"] = (
                    loss_pre.detach().cpu() if loss_pre is not None else None
                )

        loss1 = loss

        if self.loss_weight_model1 < 1.0:
            ## model2

            # encoder2
            if self.freeze_encoder2:
                with torch.no_grad():
                    encoder_out, encoder_out_lens = self.encode2(
                        encoder_out,
                        encoder_out_lens,
                        speech_raw,
                        speech_lengths,
                        ind=ind,
                    )
            else:
                encoder_out, encoder_out_lens = self.encode2(
                    encoder_out, encoder_out_lens, speech_raw, speech_lengths, ind=ind
                )

            intermediate_outs = None
            if isinstance(encoder_out, tuple):
                intermediate_outs = encoder_out[1]
                encoder_out = encoder_out[0]

            loss_att, acc_att, cer_att, wer_att, loss_pre = (
                self._calc_att_predictor_loss2(
                    encoder_out, encoder_out_lens, text, text_lengths
                )
            )

            loss = loss_att + loss_pre * self.predictor2_weight

            # Collect Attn branch stats
            stats["loss_att2"] = loss_att.detach() if loss_att is not None else None
            stats["acc2"] = acc_att
            stats["cer2"] = cer_att
            stats["wer2"] = wer_att
            stats["loss_pre2"] = (
                loss_pre.detach().cpu() if loss_pre is not None else None
            )

        loss2 = loss

        loss = loss1 * self.loss_weight_model1 + loss2 * (1 - self.loss_weight_model1)
        stats["loss1"] = torch.clone(loss1.detach())
        stats["loss2"] = torch.clone(loss2.detach())
        stats["loss"] = torch.clone(loss.detach())
        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        if self.length_normalized_loss:
            batch_size = int((text_lengths + 1).sum())

        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def collect_feats(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
    ) -> Dict[str, torch.Tensor]:
        if self.extract_feats_in_collect_stats:
            feats, feats_lengths = self._extract_feats(speech, speech_lengths)
        else:
            # Generate dummy stats if extract_feats_in_collect_stats is False
            logging.warning(
                "Generating dummy stats for feats and feats_lengths, "
                "because encoder_conf.extract_feats_in_collect_stats is "
                f"{self.extract_feats_in_collect_stats}"
            )
            feats, feats_lengths = speech, speech_lengths
        return {"feats": feats, "feats_lengths": feats_lengths}

    def encode(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        **kwargs,
    ):
        """Frontend + Encoder. Note that this method is used by asr_inference.py
        Args:
                        speech: (Batch, Length, ...)
                        speech_lengths: (Batch, )
        """
        ind = kwargs.get("ind", 0)
        with autocast(False):
            # Data augmentation
            if self.specaug is not None and self.training:
                speech, speech_lengths = self.specaug(speech, speech_lengths)

            # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
            if self.normalize is not None:
                speech, speech_lengths = self.normalize(speech, speech_lengths)

        speech_raw = speech.clone().to(speech.device)

        # 4. Forward encoder
        encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths, ind=ind)
        if isinstance(encoder_out, tuple):
            encoder_out = encoder_out[0]

        return speech_raw, encoder_out, encoder_out_lens

    def encode2(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        **kwargs,
    ):
        """Frontend + Encoder. Note that this method is used by asr_inference.py
        Args:
                        speech: (Batch, Length, ...)
                        speech_lengths: (Batch, )
        """

        ind = kwargs.get("ind", 0)
        encoder_out_rm, encoder_out_lens_rm = (
            self.encoder.overlap_chunk_cls.remove_chunk(
                encoder_out,
                encoder_out_lens,
                chunk_outs=None,
            )
        )
        # residual_input
        encoder_out = torch.cat((speech, encoder_out_rm), dim=-1)
        encoder_out_lens = encoder_out_lens_rm
        if self.stride_conv is not None:
            speech, speech_lengths = self.stride_conv(encoder_out, encoder_out_lens)
        if not self.encoder1_encoder2_joint_training:
            speech = speech.detach()
            speech_lengths = speech_lengths.detach()
        # 4. Forward encoder
        # feats: (Batch, Length, Dim)
        # -> encoder_out: (Batch, Length2, Dim2)

        encoder_out, encoder_out_lens, _ = self.encoder2(
            speech, speech_lengths, ind=ind
        )
        if isinstance(encoder_out, tuple):
            encoder_out = encoder_out[0]

        return encoder_out, encoder_out_lens

    def nll(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ) -> torch.Tensor:
        """Compute negative log likelihood(nll) from transformer-decoder
        Normally, this function is called in batchify_nll.
        Args:
                        encoder_out: (Batch, Length, Dim)
                        encoder_out_lens: (Batch,)
                        ys_pad: (Batch, Length)
                        ys_pad_lens: (Batch,)
        """
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_in_lens = ys_pad_lens + 1

        # 1. Forward decoder
        decoder_out, _ = self.decoder(
            encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
        )  # [batch, seqlen, dim]
        batch_size = decoder_out.size(0)
        decoder_num_class = decoder_out.size(2)
        # nll: negative log-likelihood
        nll = torch.nn.functional.cross_entropy(
            decoder_out.view(-1, decoder_num_class),
            ys_out_pad.view(-1),
            ignore_index=self.ignore_id,
            reduction="none",
        )
        nll = nll.view(batch_size, -1)
        nll = nll.sum(dim=1)
        assert nll.size(0) == batch_size
        return nll

    def batchify_nll(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
        batch_size: int = 100,
    ):
        """Compute negative log likelihood(nll) from transformer-decoder
        To avoid OOM, this fuction seperate the input into batches.
        Then call nll for each batch and combine and return results.
        Args:
                        encoder_out: (Batch, Length, Dim)
                        encoder_out_lens: (Batch,)
                        ys_pad: (Batch, Length)
                        ys_pad_lens: (Batch,)
                        batch_size: int, samples each batch contain when computing nll,
                                                                        you may change this to avoid OOM or increase
                                                                        GPU memory usage
        """
        total_num = encoder_out.size(0)
        if total_num <= batch_size:
            nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
        else:
            nll = []
            start_idx = 0
            while True:
                end_idx = min(start_idx + batch_size, total_num)
                batch_encoder_out = encoder_out[start_idx:end_idx, :, :]
                batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx]
                batch_ys_pad = ys_pad[start_idx:end_idx, :]
                batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx]
                batch_nll = self.nll(
                    batch_encoder_out,
                    batch_encoder_out_lens,
                    batch_ys_pad,
                    batch_ys_pad_lens,
                )
                nll.append(batch_nll)
                start_idx = end_idx
                if start_idx == total_num:
                    break
            nll = torch.cat(nll)
        assert nll.size(0) == total_num
        return nll

    def _calc_att_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_in_lens = ys_pad_lens + 1

        # 1. Forward decoder
        decoder_out, _ = self.decoder(
            encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
        )

        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_out_pad)
        acc_att = th_accuracy(
            decoder_out.view(-1, self.vocab_size),
            ys_out_pad,
            ignore_label=self.ignore_id,
        )

        # Compute cer/wer using attention-decoder
        if self.training or self.error_calculator is None:
            cer_att, wer_att = None, None
        else:
            ys_hat = decoder_out.argmax(dim=-1)
            cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())

        return loss_att, acc_att, cer_att, wer_att

    def _calc_att_predictor_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_in_lens = ys_pad_lens + 1

        encoder_out_mask = sequence_mask(
            encoder_out_lens,
            maxlen=encoder_out.size(1),
            dtype=encoder_out.dtype,
            device=encoder_out.device,
        )[:, None, :]
        mask_chunk_predictor = None
        if self.encoder.overlap_chunk_cls is not None:
            mask_chunk_predictor = (
                self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(
                None, device=encoder_out.device, batch_size=encoder_out.size(0)
            )
            encoder_out = encoder_out * mask_shfit_chunk
        pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor(
            encoder_out,
            ys_out_pad,
            encoder_out_mask,
            ignore_id=self.ignore_id,
            mask_chunk_predictor=mask_chunk_predictor,
            target_label_length=ys_in_lens,
        )
        predictor_alignments, predictor_alignments_len = (
            self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens)
        )

        scama_mask = None
        if (
            self.encoder.overlap_chunk_cls is not None
            and self.decoder_attention_chunk_type == "chunk"
        ):
            encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur
            attention_chunk_center_bias = 0
            attention_chunk_size = encoder_chunk_size
            decoder_att_look_back_factor = (
                self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur
            )
            mask_shift_att_chunk_decoder = (
                self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn(
                predictor_alignments=predictor_alignments,
                encoder_sequence_length=encoder_out_lens,
                chunk_size=1,
                encoder_chunk_size=encoder_chunk_size,
                attention_chunk_center_bias=attention_chunk_center_bias,
                attention_chunk_size=attention_chunk_size,
                attention_chunk_type=self.decoder_attention_chunk_type,
                step=None,
                predictor_mask_chunk_hopping=mask_chunk_predictor,
                decoder_att_look_back_factor=decoder_att_look_back_factor,
                mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
                target_length=ys_in_lens,
                is_training=self.training,
            )
        elif self.encoder.overlap_chunk_cls is not None:
            encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(
                encoder_out, encoder_out_lens, chunk_outs=None
            )
        # try:
        # 1. Forward decoder
        decoder_out, _ = self.decoder(
            encoder_out,
            encoder_out_lens,
            ys_in_pad,
            ys_in_lens,
            chunk_mask=scama_mask,
            pre_acoustic_embeds=pre_acoustic_embeds,
        )

        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_out_pad)
        acc_att = th_accuracy(
            decoder_out.view(-1, self.vocab_size),
            ys_out_pad,
            ignore_label=self.ignore_id,
        )
        # predictor loss
        loss_pre = self.criterion_pre(
            ys_in_lens.type_as(pre_token_length), pre_token_length
        )
        # Compute cer/wer using attention-decoder
        if self.training or self.error_calculator is None:
            cer_att, wer_att = None, None
        else:
            ys_hat = decoder_out.argmax(dim=-1)
            cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())

        return loss_att, acc_att, cer_att, wer_att, loss_pre

    def _calc_att_predictor_loss2(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_in_lens = ys_pad_lens + 1

        encoder_out_mask = sequence_mask(
            encoder_out_lens,
            maxlen=encoder_out.size(1),
            dtype=encoder_out.dtype,
            device=encoder_out.device,
        )[:, None, :]
        mask_chunk_predictor = None
        if self.encoder2.overlap_chunk_cls is not None:
            mask_chunk_predictor = (
                self.encoder2.overlap_chunk_cls.get_mask_chunk_predictor(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            mask_shfit_chunk = self.encoder2.overlap_chunk_cls.get_mask_shfit_chunk(
                None, device=encoder_out.device, batch_size=encoder_out.size(0)
            )
            encoder_out = encoder_out * mask_shfit_chunk
        pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor2(
            encoder_out,
            ys_out_pad,
            encoder_out_mask,
            ignore_id=self.ignore_id,
            mask_chunk_predictor=mask_chunk_predictor,
            target_label_length=ys_in_lens,
        )
        predictor_alignments, predictor_alignments_len = (
            self.predictor2.gen_frame_alignments(pre_alphas, encoder_out_lens)
        )

        scama_mask = None
        if (
            self.encoder2.overlap_chunk_cls is not None
            and self.decoder_attention_chunk_type2 == "chunk"
        ):
            encoder_chunk_size = (
                self.encoder2.overlap_chunk_cls.chunk_size_pad_shift_cur
            )
            attention_chunk_center_bias = 0
            attention_chunk_size = encoder_chunk_size
            decoder_att_look_back_factor = (
                self.encoder2.overlap_chunk_cls.decoder_att_look_back_factor_cur
            )
            mask_shift_att_chunk_decoder = (
                self.encoder2.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn2(
                predictor_alignments=predictor_alignments,
                encoder_sequence_length=encoder_out_lens,
                chunk_size=1,
                encoder_chunk_size=encoder_chunk_size,
                attention_chunk_center_bias=attention_chunk_center_bias,
                attention_chunk_size=attention_chunk_size,
                attention_chunk_type=self.decoder_attention_chunk_type2,
                step=None,
                predictor_mask_chunk_hopping=mask_chunk_predictor,
                decoder_att_look_back_factor=decoder_att_look_back_factor,
                mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
                target_length=ys_in_lens,
                is_training=self.training,
            )
        elif self.encoder2.overlap_chunk_cls is not None:
            encoder_out, encoder_out_lens = (
                self.encoder2.overlap_chunk_cls.remove_chunk(
                    encoder_out, encoder_out_lens, chunk_outs=None
                )
            )
        # try:
        # 1. Forward decoder
        decoder_out, _ = self.decoder2(
            encoder_out,
            encoder_out_lens,
            ys_in_pad,
            ys_in_lens,
            chunk_mask=scama_mask,
            pre_acoustic_embeds=pre_acoustic_embeds,
        )

        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_out_pad)
        acc_att = th_accuracy(
            decoder_out.view(-1, self.vocab_size),
            ys_out_pad,
            ignore_label=self.ignore_id,
        )
        # predictor loss
        loss_pre = self.criterion_pre(
            ys_in_lens.type_as(pre_token_length), pre_token_length
        )
        # Compute cer/wer using attention-decoder
        if self.training or self.error_calculator is None:
            cer_att, wer_att = None, None
        else:
            ys_hat = decoder_out.argmax(dim=-1)
            cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())

        return loss_att, acc_att, cer_att, wer_att, loss_pre

    def calc_predictor_mask(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor = None,
        ys_pad_lens: torch.Tensor = None,
    ):
        # ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        # ys_in_lens = ys_pad_lens + 1
        ys_out_pad, ys_in_lens = None, None

        encoder_out_mask = sequence_mask(
            encoder_out_lens,
            maxlen=encoder_out.size(1),
            dtype=encoder_out.dtype,
            device=encoder_out.device,
        )[:, None, :]
        mask_chunk_predictor = None
        if self.encoder.overlap_chunk_cls is not None:
            mask_chunk_predictor = (
                self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(
                None, device=encoder_out.device, batch_size=encoder_out.size(0)
            )
            encoder_out = encoder_out * mask_shfit_chunk
        pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor(
            encoder_out,
            ys_out_pad,
            encoder_out_mask,
            ignore_id=self.ignore_id,
            mask_chunk_predictor=mask_chunk_predictor,
            target_label_length=ys_in_lens,
        )
        predictor_alignments, predictor_alignments_len = (
            self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens)
        )

        scama_mask = None
        if (
            self.encoder.overlap_chunk_cls is not None
            and self.decoder_attention_chunk_type == "chunk"
        ):
            encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur
            attention_chunk_center_bias = 0
            attention_chunk_size = encoder_chunk_size
            decoder_att_look_back_factor = (
                self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur
            )
            mask_shift_att_chunk_decoder = (
                self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn(
                predictor_alignments=predictor_alignments,
                encoder_sequence_length=encoder_out_lens,
                chunk_size=1,
                encoder_chunk_size=encoder_chunk_size,
                attention_chunk_center_bias=attention_chunk_center_bias,
                attention_chunk_size=attention_chunk_size,
                attention_chunk_type=self.decoder_attention_chunk_type,
                step=None,
                predictor_mask_chunk_hopping=mask_chunk_predictor,
                decoder_att_look_back_factor=decoder_att_look_back_factor,
                mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
                target_length=ys_in_lens,
                is_training=self.training,
            )
        elif self.encoder.overlap_chunk_cls is not None:
            encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(
                encoder_out, encoder_out_lens, chunk_outs=None
            )

        return (
            pre_acoustic_embeds,
            pre_token_length,
            predictor_alignments,
            predictor_alignments_len,
            scama_mask,
        )

    def calc_predictor_mask2(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor = None,
        ys_pad_lens: torch.Tensor = None,
    ):
        # ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        # ys_in_lens = ys_pad_lens + 1
        ys_out_pad, ys_in_lens = None, None

        encoder_out_mask = sequence_mask(
            encoder_out_lens,
            maxlen=encoder_out.size(1),
            dtype=encoder_out.dtype,
            device=encoder_out.device,
        )[:, None, :]
        mask_chunk_predictor = None
        if self.encoder2.overlap_chunk_cls is not None:
            mask_chunk_predictor = (
                self.encoder2.overlap_chunk_cls.get_mask_chunk_predictor(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            mask_shfit_chunk = self.encoder2.overlap_chunk_cls.get_mask_shfit_chunk(
                None, device=encoder_out.device, batch_size=encoder_out.size(0)
            )
            encoder_out = encoder_out * mask_shfit_chunk
        pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor2(
            encoder_out,
            ys_out_pad,
            encoder_out_mask,
            ignore_id=self.ignore_id,
            mask_chunk_predictor=mask_chunk_predictor,
            target_label_length=ys_in_lens,
        )
        predictor_alignments, predictor_alignments_len = (
            self.predictor2.gen_frame_alignments(pre_alphas, encoder_out_lens)
        )

        scama_mask = None
        if (
            self.encoder2.overlap_chunk_cls is not None
            and self.decoder_attention_chunk_type2 == "chunk"
        ):
            encoder_chunk_size = (
                self.encoder2.overlap_chunk_cls.chunk_size_pad_shift_cur
            )
            attention_chunk_center_bias = 0
            attention_chunk_size = encoder_chunk_size
            decoder_att_look_back_factor = (
                self.encoder2.overlap_chunk_cls.decoder_att_look_back_factor_cur
            )
            mask_shift_att_chunk_decoder = (
                self.encoder2.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn2(
                predictor_alignments=predictor_alignments,
                encoder_sequence_length=encoder_out_lens,
                chunk_size=1,
                encoder_chunk_size=encoder_chunk_size,
                attention_chunk_center_bias=attention_chunk_center_bias,
                attention_chunk_size=attention_chunk_size,
                attention_chunk_type=self.decoder_attention_chunk_type2,
                step=None,
                predictor_mask_chunk_hopping=mask_chunk_predictor,
                decoder_att_look_back_factor=decoder_att_look_back_factor,
                mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
                target_length=ys_in_lens,
                is_training=self.training,
            )
        elif self.encoder2.overlap_chunk_cls is not None:
            encoder_out, encoder_out_lens = (
                self.encoder2.overlap_chunk_cls.remove_chunk(
                    encoder_out, encoder_out_lens, chunk_outs=None
                )
            )

        return (
            pre_acoustic_embeds,
            pre_token_length,
            predictor_alignments,
            predictor_alignments_len,
            scama_mask,
        )

    def init_beam_search(
        self,
        **kwargs,
    ):
        from funasr_detach.models.uniasr.beam_search import BeamSearchScama
        from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer
        from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus

        decoding_mode = kwargs.get("decoding_mode", "model1")
        if decoding_mode == "model1":
            decoder = self.decoder
        else:
            decoder = self.decoder2
        # 1. Build ASR model
        scorers = {}

        if self.ctc != None:
            ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos)
            scorers.update(ctc=ctc)
        token_list = kwargs.get("token_list")
        scorers.update(
            decoder=decoder,
            length_bonus=LengthBonus(len(token_list)),
        )

        # 3. Build ngram model
        # ngram is not supported now
        ngram = None
        scorers["ngram"] = ngram

        weights = dict(
            decoder=1.0 - kwargs.get("decoding_ctc_weight", 0.0),
            ctc=kwargs.get("decoding_ctc_weight", 0.0),
            lm=kwargs.get("lm_weight", 0.0),
            ngram=kwargs.get("ngram_weight", 0.0),
            length_bonus=kwargs.get("penalty", 0.0),
        )
        beam_search = BeamSearchScama(
            beam_size=kwargs.get("beam_size", 5),
            weights=weights,
            scorers=scorers,
            sos=self.sos,
            eos=self.eos,
            vocab_size=len(token_list),
            token_list=token_list,
            pre_beam_score_key=None if self.ctc_weight == 1.0 else "full",
        )

        self.beam_search = beam_search

    def inference(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        **kwargs,
    ):

        decoding_model = kwargs.get("decoding_model", "normal")
        token_num_relax = kwargs.get("token_num_relax", 5)
        if decoding_model == "fast":
            decoding_ind = 0
            decoding_mode = "model1"
        elif decoding_model == "offline":
            decoding_ind = 1
            decoding_mode = "model2"
        else:
            decoding_ind = 0
            decoding_mode = "model2"
        # init beamsearch

        if self.beam_search is None:
            logging.info("enable beam_search")
            self.init_beam_search(decoding_mode=decoding_mode, **kwargs)
            self.nbest = kwargs.get("nbest", 1)

        meta_data = {}
        if (
            isinstance(data_in, torch.Tensor)
            and kwargs.get("data_type", "sound") == "fbank"
        ):  # fbank
            speech, speech_lengths = data_in, data_lengths
            if len(speech.shape) < 3:
                speech = speech[None, :, :]
            if speech_lengths is None:
                speech_lengths = speech.shape[1]
        else:
            # extract fbank feats
            time1 = time.perf_counter()
            audio_sample_list = load_audio_text_image_video(
                data_in,
                fs=frontend.fs,
                audio_fs=kwargs.get("fs", 16000),
                data_type=kwargs.get("data_type", "sound"),
                tokenizer=tokenizer,
            )
            time2 = time.perf_counter()
            meta_data["load_data"] = f"{time2 - time1:0.3f}"
            speech, speech_lengths = extract_fbank(
                audio_sample_list,
                data_type=kwargs.get("data_type", "sound"),
                frontend=frontend,
            )
            time3 = time.perf_counter()
            meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
            meta_data["batch_data_time"] = (
                speech_lengths.sum().item()
                * frontend.frame_shift
                * frontend.lfr_n
                / 1000
            )

        speech = speech.to(device=kwargs["device"])
        speech_lengths = speech_lengths.to(device=kwargs["device"])
        speech_raw = speech.clone().to(device=kwargs["device"])
        # Encoder
        _, encoder_out, encoder_out_lens = self.encode(
            speech, speech_lengths, ind=decoding_ind
        )
        if decoding_mode == "model1":
            predictor_outs = self.calc_predictor_mask(encoder_out, encoder_out_lens)
        else:
            encoder_out, encoder_out_lens = self.encode2(
                encoder_out,
                encoder_out_lens,
                speech_raw,
                speech_lengths,
                ind=decoding_ind,
            )
            predictor_outs = self.calc_predictor_mask2(encoder_out, encoder_out_lens)

        scama_mask = predictor_outs[4]
        pre_token_length = predictor_outs[1]
        pre_acoustic_embeds = predictor_outs[0]
        maxlen = pre_token_length.sum().item() + token_num_relax
        minlen = max(0, pre_token_length.sum().item() - token_num_relax)
        # c. Passed the encoder result and the beam search
        nbest_hyps = self.beam_search(
            x=encoder_out[0],
            scama_mask=scama_mask,
            pre_acoustic_embeds=pre_acoustic_embeds,
            maxlenratio=0.0,
            minlenratio=0.0,
            maxlen=int(maxlen),
            minlen=int(minlen),
        )

        nbest_hyps = nbest_hyps[: self.nbest]

        results = []
        for hyp in nbest_hyps:

            # remove sos/eos and get results
            last_pos = -1
            if isinstance(hyp.yseq, list):
                token_int = hyp.yseq[1:last_pos]
            else:
                token_int = hyp.yseq[1:last_pos].tolist()

            # remove blank symbol id, which is assumed to be 0
            token_int = list(filter(lambda x: x != 0, token_int))

            # Change integer-ids to tokens
            token = tokenizer.ids2tokens(token_int)
            text_postprocessed = tokenizer.tokens2text(token)
            if not hasattr(tokenizer, "bpemodel"):
                text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)

            result_i = {"key": key[0], "text": text_postprocessed}
            results.append(result_i)

        return results, meta_data