Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""HIFI-GAN""" | |
import typing as tp | |
import time | |
import numpy as np | |
from scipy.signal import get_window | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import Conv1d | |
from torch.nn import ConvTranspose1d | |
from torch.nn.utils import remove_weight_norm | |
from torch.nn.utils import weight_norm | |
from torch.distributions.uniform import Uniform | |
from cosyvoice.transformer.activation import Snake | |
from cosyvoice.utils.common import get_padding | |
from cosyvoice.utils.common import init_weights | |
"""hifigan based generator implementation. | |
This code is modified from https://github.com/jik876/hifi-gan | |
,https://github.com/kan-bayashi/ParallelWaveGAN and | |
https://github.com/NVIDIA/BigVGAN | |
""" | |
class ResBlock(torch.nn.Module): | |
"""Residual block module in HiFiGAN/BigVGAN.""" | |
def __init__( | |
self, | |
channels: int = 512, | |
kernel_size: int = 3, | |
dilations: tp.List[int] = [1, 3, 5], | |
): | |
super(ResBlock, self).__init__() | |
self.convs1 = nn.ModuleList() | |
self.convs2 = nn.ModuleList() | |
for dilation in dilations: | |
self.convs1.append( | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation, | |
padding=get_padding(kernel_size, dilation), | |
) | |
) | |
) | |
self.convs2.append( | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
) | |
) | |
self.convs1.apply(init_weights) | |
self.convs2.apply(init_weights) | |
self.activations1 = nn.ModuleList( | |
[Snake(channels, alpha_logscale=False) for _ in range(len(self.convs1))] | |
) | |
self.activations2 = nn.ModuleList( | |
[Snake(channels, alpha_logscale=False) for _ in range(len(self.convs2))] | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
for idx in range(len(self.convs1)): | |
xt = self.activations1[idx](x) | |
xt = self.convs1[idx](xt) | |
xt = self.activations2[idx](xt) | |
xt = self.convs2[idx](xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for idx in range(len(self.convs1)): | |
remove_weight_norm(self.convs1[idx]) | |
remove_weight_norm(self.convs2[idx]) | |
class SineGen(torch.nn.Module): | |
"""Definition of sine generator | |
SineGen(samp_rate, harmonic_num = 0, | |
sine_amp = 0.1, noise_std = 0.003, | |
voiced_threshold = 0, | |
flag_for_pulse=False) | |
samp_rate: sampling rate in Hz | |
harmonic_num: number of harmonic overtones (default 0) | |
sine_amp: amplitude of sine-wavefrom (default 0.1) | |
noise_std: std of Gaussian noise (default 0.003) | |
voiced_thoreshold: F0 threshold for U/V classification (default 0) | |
flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
Note: when flag_for_pulse is True, the first time step of a voiced | |
segment is always sin(np.pi) or cos(0) | |
""" | |
def __init__( | |
self, | |
samp_rate, | |
harmonic_num=0, | |
sine_amp=0.1, | |
noise_std=0.003, | |
voiced_threshold=0, | |
): | |
super(SineGen, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = noise_std | |
self.harmonic_num = harmonic_num | |
self.sampling_rate = samp_rate | |
self.voiced_threshold = voiced_threshold | |
def _f02uv(self, f0): | |
# generate uv signal | |
uv = (f0 > self.voiced_threshold).type(torch.float32) | |
return uv | |
def forward(self, f0): | |
""" | |
:param f0: [B, 1, sample_len], Hz | |
:return: [B, 1, sample_len] | |
""" | |
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to( | |
f0.device | |
) | |
for i in range(self.harmonic_num + 1): | |
F_mat[:, i : i + 1, :] = f0 * (i + 1) / self.sampling_rate | |
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1) | |
u_dist = Uniform(low=-np.pi, high=np.pi) | |
phase_vec = u_dist.sample( | |
sample_shape=(f0.size(0), self.harmonic_num + 1, 1) | |
).to(F_mat.device) | |
phase_vec[:, 0, :] = 0 | |
# generate sine waveforms | |
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec) | |
# generate uv signal | |
uv = self._f02uv(f0) | |
# noise: for unvoiced should be similar to sine_amp | |
# std = self.sine_amp/3 -> max value ~ self.sine_amp | |
# . for voiced regions is self.noise_std | |
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
noise = noise_amp * torch.randn_like(sine_waves) | |
# first: set the unvoiced part to 0 by uv | |
# then: additive noise | |
sine_waves = sine_waves * uv + noise | |
return sine_waves, uv, noise | |
class SourceModuleHnNSF(torch.nn.Module): | |
"""SourceModule for hn-nsf | |
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, | |
add_noise_std=0.003, voiced_threshod=0) | |
sampling_rate: sampling_rate in Hz | |
harmonic_num: number of harmonic above F0 (default: 0) | |
sine_amp: amplitude of sine source signal (default: 0.1) | |
add_noise_std: std of additive Gaussian noise (default: 0.003) | |
note that amplitude of noise in unvoiced is decided | |
by sine_amp | |
voiced_threshold: threhold to set U/V given F0 (default: 0) | |
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
F0_sampled (batchsize, length, 1) | |
Sine_source (batchsize, length, 1) | |
noise_source (batchsize, length 1) | |
uv (batchsize, length, 1) | |
""" | |
def __init__( | |
self, | |
sampling_rate, | |
upsample_scale, | |
harmonic_num=0, | |
sine_amp=0.1, | |
add_noise_std=0.003, | |
voiced_threshod=0, | |
): | |
super(SourceModuleHnNSF, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = add_noise_std | |
# to produce sine waveforms | |
self.l_sin_gen = SineGen( | |
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod | |
) | |
# to merge source harmonics into a single excitation | |
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
self.l_tanh = torch.nn.Tanh() | |
def forward(self, x): | |
""" | |
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
F0_sampled (batchsize, length, 1) | |
Sine_source (batchsize, length, 1) | |
noise_source (batchsize, length 1) | |
""" | |
# source for harmonic branch | |
with torch.no_grad(): | |
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2)) | |
sine_wavs = sine_wavs.transpose(1, 2) | |
uv = uv.transpose(1, 2) | |
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
# source for noise branch, in the same shape as uv | |
noise = torch.randn_like(uv) * self.sine_amp / 3 | |
return sine_merge, noise, uv | |
class HiFTGenerator(nn.Module): | |
""" | |
HiFTNet Generator: Neural Source Filter + ISTFTNet | |
https://arxiv.org/abs/2309.09493 | |
""" | |
def __init__( | |
self, | |
in_channels: int = 80, | |
base_channels: int = 512, | |
nb_harmonics: int = 8, | |
sampling_rate: int = 22050, | |
nsf_alpha: float = 0.1, | |
nsf_sigma: float = 0.003, | |
nsf_voiced_threshold: float = 10, | |
upsample_rates: tp.List[int] = [8, 8], | |
upsample_kernel_sizes: tp.List[int] = [16, 16], | |
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4}, | |
resblock_kernel_sizes: tp.List[int] = [3, 7, 11], | |
resblock_dilation_sizes: tp.List[tp.List[int]] = [ | |
[1, 3, 5], | |
[1, 3, 5], | |
[1, 3, 5], | |
], | |
source_resblock_kernel_sizes: tp.List[int] = [7, 11], | |
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]], | |
lrelu_slope: float = 0.1, | |
audio_limit: float = 0.99, | |
f0_predictor: torch.nn.Module = None, | |
): | |
super(HiFTGenerator, self).__init__() | |
self.out_channels = 1 | |
self.nb_harmonics = nb_harmonics | |
self.sampling_rate = sampling_rate | |
self.istft_params = istft_params | |
self.lrelu_slope = lrelu_slope | |
self.audio_limit = audio_limit | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_rates) | |
self.upsample_rates = upsample_rates | |
self.m_source = SourceModuleHnNSF( | |
sampling_rate=sampling_rate, | |
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"], | |
harmonic_num=nb_harmonics, | |
sine_amp=nsf_alpha, | |
add_noise_std=nsf_sigma, | |
voiced_threshod=nsf_voiced_threshold, | |
) | |
self.f0_upsamp = torch.nn.Upsample( | |
scale_factor=np.prod(upsample_rates) * istft_params["hop_len"] | |
) | |
self.conv_pre = weight_norm(Conv1d(in_channels, base_channels, 7, 1, padding=3)) | |
# Up | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
self.ups.append( | |
weight_norm( | |
ConvTranspose1d( | |
base_channels // (2**i), | |
base_channels // (2 ** (i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
# Down | |
self.source_downs = nn.ModuleList() | |
self.source_resblocks = nn.ModuleList() | |
downsample_rates = [1] + upsample_rates[::-1][:-1] | |
downsample_cum_rates = np.cumprod(downsample_rates) | |
for i, (u, k, d) in enumerate( | |
zip( | |
downsample_cum_rates[::-1], | |
source_resblock_kernel_sizes, | |
source_resblock_dilation_sizes, | |
) | |
): | |
if u == 1: | |
self.source_downs.append( | |
Conv1d( | |
istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1 | |
) | |
) | |
else: | |
self.source_downs.append( | |
Conv1d( | |
istft_params["n_fft"] + 2, | |
base_channels // (2 ** (i + 1)), | |
u * 2, | |
u, | |
padding=(u // 2), | |
) | |
) | |
self.source_resblocks.append( | |
ResBlock(base_channels // (2 ** (i + 1)), k, d) | |
) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = base_channels // (2 ** (i + 1)) | |
for _, (k, d) in enumerate( | |
zip(resblock_kernel_sizes, resblock_dilation_sizes) | |
): | |
self.resblocks.append(ResBlock(ch, k, d)) | |
self.conv_post = weight_norm( | |
Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3) | |
) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
self.reflection_pad = nn.ReflectionPad1d((1, 0)) | |
self.stft_window = torch.from_numpy( | |
get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32) | |
).cuda() | |
self.f0_predictor = f0_predictor | |
self.inference_buffers = {} | |
self.inference_graphs = {} | |
def _f02source(self, f0: torch.Tensor) -> torch.Tensor: | |
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t | |
har_source, _, _ = self.m_source(f0) | |
return har_source.transpose(1, 2) | |
def _stft(self, x): | |
spec = torch.stft( | |
x, | |
self.istft_params["n_fft"], | |
self.istft_params["hop_len"], | |
self.istft_params["n_fft"], | |
window=self.stft_window, | |
return_complex=True, | |
) | |
spec = torch.view_as_real(spec) # [B, F, TT, 2] | |
return spec[..., 0], spec[..., 1] | |
def _istft(self, magnitude, phase): | |
magnitude = torch.clip(magnitude, max=1e2) | |
real = magnitude * torch.cos(phase) | |
img = magnitude * torch.sin(phase) | |
inverse_transform = torch.istft( | |
torch.complex(real, img), | |
self.istft_params["n_fft"], | |
self.istft_params["hop_len"], | |
self.istft_params["n_fft"], | |
window=self.stft_window, | |
) | |
return inverse_transform | |
def forward( | |
self, x: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0) | |
) -> torch.Tensor: | |
f0 = self.f0_predictor(x) | |
s = self._f02source(f0) | |
# use cache_source to avoid glitch | |
if cache_source.shape[2] != 0: | |
s[:, :, : cache_source.shape[2]] = cache_source | |
s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) | |
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1) | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, self.lrelu_slope) | |
x = self.ups[i](x) | |
if i == self.num_upsamples - 1: | |
x = self.reflection_pad(x) | |
# fusion | |
si = self.source_downs[i](s_stft) | |
si = self.source_resblocks[i](si) | |
x = x + si | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
magnitude = torch.exp(x[:, : self.istft_params["n_fft"] // 2 + 1, :]) | |
phase = torch.sin( | |
x[:, self.istft_params["n_fft"] // 2 + 1 :, :] | |
) # actually, sin is redundancy | |
x = self._istft(magnitude, phase) | |
x = torch.clamp(x, -self.audio_limit, self.audio_limit) | |
return x, s | |
def remove_weight_norm(self): | |
print("Removing weight norm...") | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
remove_weight_norm(self.conv_pre) | |
remove_weight_norm(self.conv_post) | |
self.source_module.remove_weight_norm() | |
for l in self.source_downs: | |
remove_weight_norm(l) | |
for l in self.source_resblocks: | |
l.remove_weight_norm() | |
def _inference_impl(self, mel: torch.Tensor, s_stft: torch.Tensor) -> torch.Tensor: | |
x = self.conv_pre(mel) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, self.lrelu_slope) | |
x = self.ups[i](x) | |
if i == self.num_upsamples - 1: | |
x = self.reflection_pad(x) | |
# fusion | |
si = self.source_downs[i](s_stft) | |
si = self.source_resblocks[i](si) | |
x = x + si | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
magnitude = torch.exp(x[:, : self.istft_params["n_fft"] // 2 + 1, :]) | |
phase = torch.sin( | |
x[:, self.istft_params["n_fft"] // 2 + 1 :, :] | |
) # actually, sin is redundancy | |
# print(f"mel: {mel.shape}, magnitude: {magnitude.shape}, phase: {phase.shape}") | |
return magnitude, phase | |
def inference( | |
self, mel: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0) | |
) -> torch.Tensor: | |
curr_seq_len = mel.shape[2] | |
f0 = self.f0_predictor(mel) | |
s = self._f02source(f0) | |
s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) | |
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1) | |
target_len = None | |
for seq_len in sorted(self.inference_buffers.keys()): | |
if curr_seq_len <= seq_len: | |
target_len = seq_len | |
break | |
if target_len is not None: | |
buffer = self.inference_buffers[target_len] | |
if curr_seq_len < target_len: | |
padded_mel = torch.zeros_like(buffer["mel"]) | |
padded_mel[:, :, :curr_seq_len] = mel | |
buffer["mel"].copy_(padded_mel) | |
padded_s_stft = torch.zeros_like(buffer["s_stft"]) | |
cur_s_stft_len = s_stft.shape[2] | |
padded_s_stft[:, :, :cur_s_stft_len] = s_stft | |
buffer["s_stft"].copy_(padded_s_stft) | |
else: | |
buffer["mel"].copy_(mel) | |
buffer["s_stft"].copy_(s_stft) | |
cur_s_stft_len = s_stft.shape[2] | |
self.inference_graphs[target_len].replay() | |
magnitude, phase = ( | |
buffer["magnitude"][:, :, :cur_s_stft_len], | |
buffer["phase"][:, :, :cur_s_stft_len], | |
) | |
else: | |
magnitude, phase = self._inference_impl(mel=mel, s_stft=s_stft) | |
x = self._istft(magnitude, phase) | |
x = torch.clamp(x, -self.audio_limit, self.audio_limit) | |
return x, s | |
def capture_inference(self, seq_len_to_capture=[64, 128, 256, 512, 1024]): | |
start_time = time.time() | |
print( | |
f"capture inference for HiFTGenerator with seq_len_to_capture: {seq_len_to_capture}" | |
) | |
for seq_len in seq_len_to_capture: | |
mel = torch.randn( | |
1, 80, seq_len, device=torch.device("cuda"), dtype=torch.float32 | |
) | |
f0 = self.f0_predictor(mel) | |
s = self._f02source(f0) | |
s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) | |
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1) | |
magnitude, phase = self._inference_impl(mel=mel, s_stft=s_stft) | |
torch.cuda.synchronize() | |
g = torch.cuda.CUDAGraph() | |
with torch.cuda.graph(g): | |
magnitude, phase = self._inference_impl(mel=mel, s_stft=s_stft) | |
inference_buffer = { | |
"mel": mel, | |
"s_stft": s_stft, | |
"magnitude": magnitude, | |
"phase": phase, | |
} | |
self.inference_buffers[seq_len] = inference_buffer | |
self.inference_graphs[seq_len] = g | |
end_time = time.time() | |
print( | |
f"capture inference for HiFTGenerator with seq_len_to_capture: {seq_len_to_capture} takes {end_time - start_time} seconds" | |
) | |