mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
import copy
from typing import Optional
from typing import Tuple
from typing import Union
import logging
import humanfriendly
import numpy as np
import torch
import torch.nn as nn
try:
from torch_complex.tensor import ComplexTensor
except:
print("Please install torch_complex firstly")
from funasr_detach.frontends.utils.log_mel import LogMel
from funasr_detach.frontends.utils.stft import Stft
from funasr_detach.frontends.utils.frontend import Frontend
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
class DefaultFrontend(nn.Module):
"""Conventional frontend structure for ASR.
Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN
"""
def __init__(
self,
fs: Union[int, str] = 16000,
n_fft: int = 512,
win_length: int = None,
hop_length: int = 128,
window: Optional[str] = "hann",
center: bool = True,
normalized: bool = False,
onesided: bool = True,
n_mels: int = 80,
fmin: int = None,
fmax: int = None,
htk: bool = False,
frontend_conf: Optional[dict] = None,
apply_stft: bool = True,
use_channel: int = None,
):
super().__init__()
if isinstance(fs, str):
fs = humanfriendly.parse_size(fs)
# Deepcopy (In general, dict shouldn't be used as default arg)
frontend_conf = copy.deepcopy(frontend_conf)
self.hop_length = hop_length
if apply_stft:
self.stft = Stft(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=center,
window=window,
normalized=normalized,
onesided=onesided,
)
else:
self.stft = None
self.apply_stft = apply_stft
if frontend_conf is not None:
self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf)
else:
self.frontend = None
self.logmel = LogMel(
fs=fs,
n_fft=n_fft,
n_mels=n_mels,
fmin=fmin,
fmax=fmax,
htk=htk,
)
self.n_mels = n_mels
self.use_channel = use_channel
self.frontend_type = "default"
def output_size(self) -> int:
return self.n_mels
def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Domain-conversion: e.g. Stft: time -> time-freq
if self.stft is not None:
input_stft, feats_lens = self._compute_stft(input, input_lengths)
else:
input_stft = ComplexTensor(input[..., 0], input[..., 1])
feats_lens = input_lengths
# 2. [Option] Speech enhancement
if self.frontend is not None:
assert isinstance(input_stft, ComplexTensor), type(input_stft)
# input_stft: (Batch, Length, [Channel], Freq)
input_stft, _, mask = self.frontend(input_stft, feats_lens)
# 3. [Multi channel case]: Select a channel
if input_stft.dim() == 4:
# h: (B, T, C, F) -> h: (B, T, F)
if self.training:
if self.use_channel is not None:
input_stft = input_stft[:, :, self.use_channel, :]
else:
# Select 1ch randomly
ch = np.random.randint(input_stft.size(2))
input_stft = input_stft[:, :, ch, :]
else:
# Use the first channel
input_stft = input_stft[:, :, 0, :]
# 4. STFT -> Power spectrum
# h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F)
input_power = input_stft.real**2 + input_stft.imag**2
# 5. Feature transform e.g. Stft -> Log-Mel-Fbank
# input_power: (Batch, [Channel,] Length, Freq)
# -> input_feats: (Batch, Length, Dim)
input_feats, _ = self.logmel(input_power, feats_lens)
return input_feats, feats_lens
def _compute_stft(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> torch.Tensor:
input_stft, feats_lens = self.stft(input, input_lengths)
assert input_stft.dim() >= 4, input_stft.shape
# "2" refers to the real/imag parts of Complex
assert input_stft.shape[-1] == 2, input_stft.shape
# Change torch.Tensor to ComplexTensor
# input_stft: (..., F, 2) -> (..., F)
input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1])
return input_stft, feats_lens
class MultiChannelFrontend(nn.Module):
"""Conventional frontend structure for ASR.
Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN
"""
def __init__(
self,
fs: Union[int, str] = 16000,
n_fft: int = 512,
win_length: int = None,
hop_length: int = None,
frame_length: int = None,
frame_shift: int = None,
window: Optional[str] = "hann",
center: bool = True,
normalized: bool = False,
onesided: bool = True,
n_mels: int = 80,
fmin: int = None,
fmax: int = None,
htk: bool = False,
frontend_conf: Optional[dict] = None,
apply_stft: bool = True,
use_channel: int = None,
lfr_m: int = 1,
lfr_n: int = 1,
cmvn_file: str = None,
mc: bool = True,
):
super().__init__()
if isinstance(fs, str):
fs = humanfriendly.parse_size(fs)
# Deepcopy (In general, dict shouldn't be used as default arg)
frontend_conf = copy.deepcopy(frontend_conf)
if win_length is None and hop_length is None:
self.win_length = frame_length * 16
self.hop_length = frame_shift * 16
elif frame_length is None and frame_shift is None:
self.win_length = self.win_length
self.hop_length = self.hop_length
else:
logging.error(
"Only one of (win_length, hop_length) and (frame_length, frame_shift)"
"can be set."
)
exit(1)
if apply_stft:
self.stft = Stft(
n_fft=n_fft,
win_length=self.win_length,
hop_length=self.hop_length,
center=center,
window=window,
normalized=normalized,
onesided=onesided,
)
else:
self.stft = None
self.apply_stft = apply_stft
if frontend_conf is not None:
self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf)
else:
self.frontend = None
self.logmel = LogMel(
fs=fs,
n_fft=n_fft,
n_mels=n_mels,
fmin=fmin,
fmax=fmax,
htk=htk,
)
self.n_mels = n_mels
self.use_channel = use_channel
self.mc = mc
if not self.mc:
if self.use_channel is not None:
logging.info("use the channel %d" % (self.use_channel))
else:
logging.info("random select channel")
self.cmvn_file = cmvn_file
if self.cmvn_file is not None:
mean, std = self._load_cmvn(self.cmvn_file)
self.register_buffer("mean", torch.from_numpy(mean))
self.register_buffer("std", torch.from_numpy(std))
self.frontend_type = "multichannelfrontend"
def output_size(self) -> int:
return self.n_mels
def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Domain-conversion: e.g. Stft: time -> time-freq
# import pdb;pdb.set_trace()
if self.stft is not None:
input_stft, feats_lens = self._compute_stft(input, input_lengths)
else:
input_stft = ComplexTensor(input[..., 0], input[..., 1])
feats_lens = input_lengths
# 2. [Option] Speech enhancement
if self.frontend is not None:
assert isinstance(input_stft, ComplexTensor), type(input_stft)
# input_stft: (Batch, Length, [Channel], Freq)
input_stft, _, mask = self.frontend(input_stft, feats_lens)
# 3. [Multi channel case]: Select a channel(sa_asr)
if input_stft.dim() == 4 and not self.mc:
# h: (B, T, C, F) -> h: (B, T, F)
if self.training:
if self.use_channel is not None:
input_stft = input_stft[:, :, self.use_channel, :]
else:
# Select 1ch randomly
ch = np.random.randint(input_stft.size(2))
input_stft = input_stft[:, :, ch, :]
else:
# Use the first channel
input_stft = input_stft[:, :, 0, :]
# 4. STFT -> Power spectrum
# h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F)
input_power = input_stft.real**2 + input_stft.imag**2
# 5. Feature transform e.g. Stft -> Log-Mel-Fbank
# input_power: (Batch, [Channel,] Length, Freq)
# -> input_feats: (Batch, Length, Dim)
input_feats, _ = self.logmel(input_power, feats_lens)
if self.mc:
# MFCCA
if input_feats.dim() == 4:
bt = input_feats.size(0)
channel_size = input_feats.size(2)
input_feats = (
input_feats.transpose(1, 2)
.reshape(bt * channel_size, -1, 80)
.contiguous()
)
feats_lens = feats_lens.repeat(1, channel_size).squeeze()
else:
channel_size = 1
return input_feats, feats_lens, channel_size
else:
# 6. Apply CMVN
if self.cmvn_file is not None:
if feats_lens is None:
feats_lens = input_feats.new_full(
[input_feats.size(0)], input_feats.size(1)
)
self.mean = self.mean.to(input_feats.device, input_feats.dtype)
self.std = self.std.to(input_feats.device, input_feats.dtype)
mask = make_pad_mask(feats_lens, input_feats, 1)
if input_feats.requires_grad:
input_feats = input_feats + self.mean
else:
input_feats += self.mean
if input_feats.requires_grad:
input_feats = input_feats.masked_fill(mask, 0.0)
else:
input_feats.masked_fill_(mask, 0.0)
input_feats *= self.std
return input_feats, feats_lens
def _compute_stft(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> torch.Tensor:
input_stft, feats_lens = self.stft(input, input_lengths)
assert input_stft.dim() >= 4, input_stft.shape
# "2" refers to the real/imag parts of Complex
assert input_stft.shape[-1] == 2, input_stft.shape
# Change torch.Tensor to ComplexTensor
# input_stft: (..., F, 2) -> (..., F)
input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1])
return input_stft, feats_lens
def _load_cmvn(self, cmvn_file):
with open(cmvn_file, "r", encoding="utf-8") as f:
lines = f.readlines()
means_list = []
vars_list = []
for i in range(len(lines)):
line_item = lines[i].split()
if line_item[0] == "<AddShift>":
line_item = lines[i + 1].split()
if line_item[0] == "<LearnRateCoef>":
add_shift_line = line_item[3 : (len(line_item) - 1)]
means_list = list(add_shift_line)
continue
elif line_item[0] == "<Rescale>":
line_item = lines[i + 1].split()
if line_item[0] == "<LearnRateCoef>":
rescale_line = line_item[3 : (len(line_item) - 1)]
vars_list = list(rescale_line)
continue
means = np.array(means_list).astype(np.float)
vars = np.array(vars_list).astype(np.float)
return means, vars