Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
try: | |
from rotary_embedding_torch import RotaryEmbedding | |
except: | |
print( | |
"If you want use mossformer, lease install rotary_embedding_torch by: \n pip install -U rotary_embedding_torch" | |
) | |
from funasr_detach.models.transformer.layer_norm import ( | |
GlobalLayerNorm, | |
CumulativeLayerNorm, | |
ScaleNorm, | |
) | |
from funasr_detach.models.transformer.embedding import ScaledSinuEmbedding | |
from funasr_detach.models.transformer.mossformer import FLASH_ShareA_FFConvM | |
def select_norm(norm, dim, shape): | |
"""Just a wrapper to select the normalization type.""" | |
if norm == "gln": | |
return GlobalLayerNorm(dim, shape, elementwise_affine=True) | |
if norm == "cln": | |
return CumulativeLayerNorm(dim, elementwise_affine=True) | |
if norm == "ln": | |
return nn.GroupNorm(1, dim, eps=1e-8) | |
else: | |
return nn.BatchNorm1d(dim) | |
class MossformerBlock(nn.Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
depth, | |
group_size=256, | |
query_key_dim=128, | |
expansion_factor=4.0, | |
causal=False, | |
attn_dropout=0.1, | |
norm_type="scalenorm", | |
shift_tokens=True | |
): | |
super().__init__() | |
assert norm_type in ( | |
"scalenorm", | |
"layernorm", | |
), "norm_type must be one of scalenorm or layernorm" | |
if norm_type == "scalenorm": | |
norm_klass = ScaleNorm | |
elif norm_type == "layernorm": | |
norm_klass = nn.LayerNorm | |
self.group_size = group_size | |
rotary_pos_emb = RotaryEmbedding(dim=min(32, query_key_dim)) | |
# max rotary embedding dimensions of 32, partial Rotary embeddings, from Wang et al - GPT-J | |
self.layers = nn.ModuleList( | |
[ | |
FLASH_ShareA_FFConvM( | |
dim=dim, | |
group_size=group_size, | |
query_key_dim=query_key_dim, | |
expansion_factor=expansion_factor, | |
causal=causal, | |
dropout=attn_dropout, | |
rotary_pos_emb=rotary_pos_emb, | |
norm_klass=norm_klass, | |
shift_tokens=shift_tokens, | |
) | |
for _ in range(depth) | |
] | |
) | |
def forward(self, x, *, mask=None): | |
ii = 0 | |
for flash in self.layers: | |
x = flash(x, mask=mask) | |
ii = ii + 1 | |
return x | |
class MossFormer_MaskNet(nn.Module): | |
"""The MossFormer module for computing output masks. | |
Arguments | |
--------- | |
in_channels : int | |
Number of channels at the output of the encoder. | |
out_channels : int | |
Number of channels that would be inputted to the intra and inter blocks. | |
num_blocks : int | |
Number of layers of Dual Computation Block. | |
norm : str | |
Normalization type. | |
num_spks : int | |
Number of sources (speakers). | |
skip_around_intra : bool | |
Skip connection around intra. | |
use_global_pos_enc : bool | |
Global positional encodings. | |
max_length : int | |
Maximum sequence length. | |
Example | |
--------- | |
>>> mossformer_block = MossFormerM(1, 64, 8) | |
>>> mossformer_masknet = MossFormer_MaskNet(64, 64, intra_block, num_spks=2) | |
>>> x = torch.randn(10, 64, 2000) | |
>>> x = mossformer_masknet(x) | |
>>> x.shape | |
torch.Size([2, 10, 64, 2000]) | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
num_blocks=24, | |
norm="ln", | |
num_spks=2, | |
skip_around_intra=True, | |
use_global_pos_enc=True, | |
max_length=20000, | |
): | |
super(MossFormer_MaskNet, self).__init__() | |
self.num_spks = num_spks | |
self.num_blocks = num_blocks | |
self.norm = select_norm(norm, in_channels, 3) | |
self.conv1d_encoder = nn.Conv1d(in_channels, out_channels, 1, bias=False) | |
self.use_global_pos_enc = use_global_pos_enc | |
if self.use_global_pos_enc: | |
self.pos_enc = ScaledSinuEmbedding(out_channels) | |
self.mdl = Computation_Block( | |
num_blocks, | |
out_channels, | |
norm, | |
skip_around_intra=skip_around_intra, | |
) | |
self.conv1d_out = nn.Conv1d( | |
out_channels, out_channels * num_spks, kernel_size=1 | |
) | |
self.conv1_decoder = nn.Conv1d(out_channels, in_channels, 1, bias=False) | |
self.prelu = nn.PReLU() | |
self.activation = nn.ReLU() | |
# gated output layer | |
self.output = nn.Sequential(nn.Conv1d(out_channels, out_channels, 1), nn.Tanh()) | |
self.output_gate = nn.Sequential( | |
nn.Conv1d(out_channels, out_channels, 1), nn.Sigmoid() | |
) | |
def forward(self, x): | |
"""Returns the output tensor. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Input tensor of dimension [B, N, S]. | |
Returns | |
------- | |
out : torch.Tensor | |
Output tensor of dimension [spks, B, N, S] | |
where, spks = Number of speakers | |
B = Batchsize, | |
N = number of filters | |
S = the number of time frames | |
""" | |
# before each line we indicate the shape after executing the line | |
# [B, N, L] | |
x = self.norm(x) | |
# [B, N, L] | |
x = self.conv1d_encoder(x) | |
if self.use_global_pos_enc: | |
# x = self.pos_enc(x.transpose(1, -1)).transpose(1, -1) + x * ( | |
# x.size(1) ** 0.5) | |
base = x | |
x = x.transpose(1, -1) | |
emb = self.pos_enc(x) | |
emb = emb.transpose(0, -1) | |
# print('base: {}, emb: {}'.format(base.shape, emb.shape)) | |
x = base + emb | |
# [B, N, S] | |
# for i in range(self.num_modules): | |
# x = self.dual_mdl[i](x) | |
x = self.mdl(x) | |
x = self.prelu(x) | |
# [B, N*spks, S] | |
x = self.conv1d_out(x) | |
B, _, S = x.shape | |
# [B*spks, N, S] | |
x = x.view(B * self.num_spks, -1, S) | |
# [B*spks, N, S] | |
x = self.output(x) * self.output_gate(x) | |
# [B*spks, N, S] | |
x = self.conv1_decoder(x) | |
# [B, spks, N, S] | |
_, N, L = x.shape | |
x = x.view(B, self.num_spks, N, L) | |
x = self.activation(x) | |
# [spks, B, N, S] | |
x = x.transpose(0, 1) | |
return x | |
class MossFormerEncoder(nn.Module): | |
"""Convolutional Encoder Layer. | |
Arguments | |
--------- | |
kernel_size : int | |
Length of filters. | |
in_channels : int | |
Number of input channels. | |
out_channels : int | |
Number of output channels. | |
Example | |
------- | |
>>> x = torch.randn(2, 1000) | |
>>> encoder = Encoder(kernel_size=4, out_channels=64) | |
>>> h = encoder(x) | |
>>> h.shape | |
torch.Size([2, 64, 499]) | |
""" | |
def __init__(self, kernel_size=2, out_channels=64, in_channels=1): | |
super(MossFormerEncoder, self).__init__() | |
self.conv1d = nn.Conv1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=kernel_size // 2, | |
groups=1, | |
bias=False, | |
) | |
self.in_channels = in_channels | |
def forward(self, x): | |
"""Return the encoded output. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Input tensor with dimensionality [B, L]. | |
Return | |
------ | |
x : torch.Tensor | |
Encoded tensor with dimensionality [B, N, T_out]. | |
where B = Batchsize | |
L = Number of timepoints | |
N = Number of filters | |
T_out = Number of timepoints at the output of the encoder | |
""" | |
# B x L -> B x 1 x L | |
if self.in_channels == 1: | |
x = torch.unsqueeze(x, dim=1) | |
# B x 1 x L -> B x N x T_out | |
x = self.conv1d(x) | |
x = F.relu(x) | |
return x | |
class MossFormerM(nn.Module): | |
"""This class implements the transformer encoder. | |
Arguments | |
--------- | |
num_blocks : int | |
Number of mossformer blocks to include. | |
d_model : int | |
The dimension of the input embedding. | |
attn_dropout : float | |
Dropout for the self-attention (Optional). | |
group_size: int | |
the chunk size | |
query_key_dim: int | |
the attention vector dimension | |
expansion_factor: int | |
the expansion factor for the linear projection in conv module | |
causal: bool | |
true for causal / false for non causal | |
Example | |
------- | |
>>> import torch | |
>>> x = torch.rand((8, 60, 512)) | |
>>> net = TransformerEncoder_MossFormerM(num_blocks=8, d_model=512) | |
>>> output, _ = net(x) | |
>>> output.shape | |
torch.Size([8, 60, 512]) | |
""" | |
def __init__( | |
self, | |
num_blocks, | |
d_model=None, | |
causal=False, | |
group_size=256, | |
query_key_dim=128, | |
expansion_factor=4.0, | |
attn_dropout=0.1, | |
): | |
super().__init__() | |
self.mossformerM = MossformerBlock( | |
dim=d_model, | |
depth=num_blocks, | |
group_size=group_size, | |
query_key_dim=query_key_dim, | |
expansion_factor=expansion_factor, | |
causal=causal, | |
attn_dropout=attn_dropout, | |
) | |
self.norm = nn.LayerNorm(d_model, eps=1e-6) | |
def forward( | |
self, | |
src, | |
): | |
""" | |
Arguments | |
---------- | |
src : torch.Tensor | |
Tensor shape [B, L, N], | |
where, B = Batchsize, | |
L = time points | |
N = number of filters | |
The sequence to the encoder layer (required). | |
src_mask : tensor | |
The mask for the src sequence (optional). | |
src_key_padding_mask : tensor | |
The mask for the src keys per batch (optional). | |
""" | |
output = self.mossformerM(src) | |
output = self.norm(output) | |
return output | |
class Computation_Block(nn.Module): | |
"""Computation block for dual-path processing. | |
Arguments | |
--------- | |
out_channels : int | |
Dimensionality of inter/intra model. | |
norm : str | |
Normalization type. | |
skip_around_intra : bool | |
Skip connection around the intra layer. | |
Example | |
--------- | |
>>> comp_block = Computation_Block(64) | |
>>> x = torch.randn(10, 64, 100) | |
>>> x = comp_block(x) | |
>>> x.shape | |
torch.Size([10, 64, 100]) | |
""" | |
def __init__( | |
self, | |
num_blocks, | |
out_channels, | |
norm="ln", | |
skip_around_intra=True, | |
): | |
super(Computation_Block, self).__init__() | |
##MossFormer2M: MossFormer with recurrence | |
# self.intra_mdl = MossFormer2M(num_blocks=num_blocks, d_model=out_channels) | |
##MossFormerM: the orignal MossFormer | |
self.intra_mdl = MossFormerM(num_blocks=num_blocks, d_model=out_channels) | |
self.skip_around_intra = skip_around_intra | |
# Norm | |
self.norm = norm | |
if norm is not None: | |
self.intra_norm = select_norm(norm, out_channels, 3) | |
def forward(self, x): | |
"""Returns the output tensor. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Input tensor of dimension [B, N, S]. | |
Return | |
--------- | |
out: torch.Tensor | |
Output tensor of dimension [B, N, S]. | |
where, B = Batchsize, | |
N = number of filters | |
S = sequence time index | |
""" | |
B, N, S = x.shape | |
# intra RNN | |
# [B, S, N] | |
intra = x.permute(0, 2, 1).contiguous() # .view(B, S, N) | |
intra = self.intra_mdl(intra) | |
# [B, N, S] | |
intra = intra.permute(0, 2, 1).contiguous() | |
if self.norm is not None: | |
intra = self.intra_norm(intra) | |
# [B, N, S] | |
if self.skip_around_intra: | |
intra = intra + x | |
out = intra | |
return out | |