mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Multi-Head Attention layer definition."""
import math
import numpy
import torch
from torch import nn
from typing import Optional, Tuple
import torch.nn.functional as F
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
import funasr_detach.models.lora.layers as lora
class CosineDistanceAttention(nn.Module):
"""Compute Cosine Distance between spk decoder output and speaker profile
Args:
profile_path: speaker profile file path (.npy file)
"""
def __init__(self):
super().__init__()
self.softmax = nn.Softmax(dim=-1)
def forward(self, spk_decoder_out, profile, profile_lens=None):
"""
Args:
spk_decoder_out(torch.Tensor):(B, L, D)
spk_profiles(torch.Tensor):(B, N, D)
"""
x = spk_decoder_out.unsqueeze(2) # (B, L, 1, D)
if profile_lens is not None:
mask = (make_pad_mask(profile_lens)[:, None, :]).to(profile.device)
min_value = float(
numpy.finfo(torch.tensor(0, dtype=x.dtype).numpy().dtype).min
)
weights_not_softmax = F.cosine_similarity(
x, profile.unsqueeze(1), dim=-1
).masked_fill(mask, min_value)
weights = self.softmax(weights_not_softmax).masked_fill(
mask, 0.0
) # (B, L, N)
else:
x = x[:, -1:, :, :]
weights_not_softmax = F.cosine_similarity(
x, profile.unsqueeze(1).to(x.device), dim=-1
)
weights = self.softmax(weights_not_softmax) # (B, 1, N)
spk_embedding = torch.matmul(weights, profile.to(weights.device)) # (B, L, D)
return spk_embedding, weights