Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import torch | |
import random | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from funasr_detach.register import tables | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
from funasr_detach.models.transformer.utils.nets_utils import to_device | |
from funasr_detach.models.language_model.rnn.attentions import initial_att | |
def build_attention_list( | |
eprojs: int, | |
dunits: int, | |
atype: str = "location", | |
num_att: int = 1, | |
num_encs: int = 1, | |
aheads: int = 4, | |
adim: int = 320, | |
awin: int = 5, | |
aconv_chans: int = 10, | |
aconv_filts: int = 100, | |
han_mode: bool = False, | |
han_type=None, | |
han_heads: int = 4, | |
han_dim: int = 320, | |
han_conv_chans: int = -1, | |
han_conv_filts: int = 100, | |
han_win: int = 5, | |
): | |
att_list = torch.nn.ModuleList() | |
if num_encs == 1: | |
for i in range(num_att): | |
att = initial_att( | |
atype, | |
eprojs, | |
dunits, | |
aheads, | |
adim, | |
awin, | |
aconv_chans, | |
aconv_filts, | |
) | |
att_list.append(att) | |
elif num_encs > 1: # no multi-speaker mode | |
if han_mode: | |
att = initial_att( | |
han_type, | |
eprojs, | |
dunits, | |
han_heads, | |
han_dim, | |
han_win, | |
han_conv_chans, | |
han_conv_filts, | |
han_mode=True, | |
) | |
return att | |
else: | |
att_list = torch.nn.ModuleList() | |
for idx in range(num_encs): | |
att = initial_att( | |
atype[idx], | |
eprojs, | |
dunits, | |
aheads[idx], | |
adim[idx], | |
awin[idx], | |
aconv_chans[idx], | |
aconv_filts[idx], | |
) | |
att_list.append(att) | |
else: | |
raise ValueError( | |
"Number of encoders needs to be more than one. {}".format(num_encs) | |
) | |
return att_list | |
class RNNDecoder(nn.Module): | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
rnn_type: str = "lstm", | |
num_layers: int = 1, | |
hidden_size: int = 320, | |
sampling_probability: float = 0.0, | |
dropout: float = 0.0, | |
context_residual: bool = False, | |
replace_sos: bool = False, | |
num_encs: int = 1, | |
att_conf: dict = None, | |
): | |
# FIXME(kamo): The parts of num_spk should be refactored more more more | |
if rnn_type not in {"lstm", "gru"}: | |
raise ValueError(f"Not supported: rnn_type={rnn_type}") | |
super().__init__() | |
eprojs = encoder_output_size | |
self.dtype = rnn_type | |
self.dunits = hidden_size | |
self.dlayers = num_layers | |
self.context_residual = context_residual | |
self.sos = vocab_size - 1 | |
self.eos = vocab_size - 1 | |
self.odim = vocab_size | |
self.sampling_probability = sampling_probability | |
self.dropout = dropout | |
self.num_encs = num_encs | |
# for multilingual translation | |
self.replace_sos = replace_sos | |
self.embed = torch.nn.Embedding(vocab_size, hidden_size) | |
self.dropout_emb = torch.nn.Dropout(p=dropout) | |
self.decoder = torch.nn.ModuleList() | |
self.dropout_dec = torch.nn.ModuleList() | |
self.decoder += [ | |
( | |
torch.nn.LSTMCell(hidden_size + eprojs, hidden_size) | |
if self.dtype == "lstm" | |
else torch.nn.GRUCell(hidden_size + eprojs, hidden_size) | |
) | |
] | |
self.dropout_dec += [torch.nn.Dropout(p=dropout)] | |
for _ in range(1, self.dlayers): | |
self.decoder += [ | |
( | |
torch.nn.LSTMCell(hidden_size, hidden_size) | |
if self.dtype == "lstm" | |
else torch.nn.GRUCell(hidden_size, hidden_size) | |
) | |
] | |
self.dropout_dec += [torch.nn.Dropout(p=dropout)] | |
# NOTE: dropout is applied only for the vertical connections | |
# see https://arxiv.org/pdf/1409.2329.pdf | |
if context_residual: | |
self.output = torch.nn.Linear(hidden_size + eprojs, vocab_size) | |
else: | |
self.output = torch.nn.Linear(hidden_size, vocab_size) | |
self.att_list = build_attention_list( | |
eprojs=eprojs, dunits=hidden_size, **att_conf | |
) | |
def zero_state(self, hs_pad): | |
return hs_pad.new_zeros(hs_pad.size(0), self.dunits) | |
def rnn_forward(self, ey, z_list, c_list, z_prev, c_prev): | |
if self.dtype == "lstm": | |
z_list[0], c_list[0] = self.decoder[0](ey, (z_prev[0], c_prev[0])) | |
for i in range(1, self.dlayers): | |
z_list[i], c_list[i] = self.decoder[i]( | |
self.dropout_dec[i - 1](z_list[i - 1]), | |
(z_prev[i], c_prev[i]), | |
) | |
else: | |
z_list[0] = self.decoder[0](ey, z_prev[0]) | |
for i in range(1, self.dlayers): | |
z_list[i] = self.decoder[i]( | |
self.dropout_dec[i - 1](z_list[i - 1]), z_prev[i] | |
) | |
return z_list, c_list | |
def forward(self, hs_pad, hlens, ys_in_pad, ys_in_lens, strm_idx=0): | |
# to support mutiple encoder asr mode, in single encoder mode, | |
# convert torch.Tensor to List of torch.Tensor | |
if self.num_encs == 1: | |
hs_pad = [hs_pad] | |
hlens = [hlens] | |
# attention index for the attention module | |
# in SPA (speaker parallel attention), | |
# att_idx is used to select attention module. In other cases, it is 0. | |
att_idx = min(strm_idx, len(self.att_list) - 1) | |
# hlens should be list of list of integer | |
hlens = [list(map(int, hlens[idx])) for idx in range(self.num_encs)] | |
# get dim, length info | |
olength = ys_in_pad.size(1) | |
# initialization | |
c_list = [self.zero_state(hs_pad[0])] | |
z_list = [self.zero_state(hs_pad[0])] | |
for _ in range(1, self.dlayers): | |
c_list.append(self.zero_state(hs_pad[0])) | |
z_list.append(self.zero_state(hs_pad[0])) | |
z_all = [] | |
if self.num_encs == 1: | |
att_w = None | |
self.att_list[att_idx].reset() # reset pre-computation of h | |
else: | |
att_w_list = [None] * (self.num_encs + 1) # atts + han | |
att_c_list = [None] * self.num_encs # atts | |
for idx in range(self.num_encs + 1): | |
# reset pre-computation of h in atts and han | |
self.att_list[idx].reset() | |
# pre-computation of embedding | |
eys = self.dropout_emb(self.embed(ys_in_pad)) # utt x olen x zdim | |
# loop for an output sequence | |
for i in range(olength): | |
if self.num_encs == 1: | |
att_c, att_w = self.att_list[att_idx]( | |
hs_pad[0], hlens[0], self.dropout_dec[0](z_list[0]), att_w | |
) | |
else: | |
for idx in range(self.num_encs): | |
att_c_list[idx], att_w_list[idx] = self.att_list[idx]( | |
hs_pad[idx], | |
hlens[idx], | |
self.dropout_dec[0](z_list[0]), | |
att_w_list[idx], | |
) | |
hs_pad_han = torch.stack(att_c_list, dim=1) | |
hlens_han = [self.num_encs] * len(ys_in_pad) | |
att_c, att_w_list[self.num_encs] = self.att_list[self.num_encs]( | |
hs_pad_han, | |
hlens_han, | |
self.dropout_dec[0](z_list[0]), | |
att_w_list[self.num_encs], | |
) | |
if i > 0 and random.random() < self.sampling_probability: | |
z_out = self.output(z_all[-1]) | |
z_out = np.argmax(z_out.detach().cpu(), axis=1) | |
z_out = self.dropout_emb(self.embed(to_device(self, z_out))) | |
ey = torch.cat((z_out, att_c), dim=1) # utt x (zdim + hdim) | |
else: | |
# utt x (zdim + hdim) | |
ey = torch.cat((eys[:, i, :], att_c), dim=1) | |
z_list, c_list = self.rnn_forward(ey, z_list, c_list, z_list, c_list) | |
if self.context_residual: | |
z_all.append( | |
torch.cat((self.dropout_dec[-1](z_list[-1]), att_c), dim=-1) | |
) # utt x (zdim + hdim) | |
else: | |
z_all.append(self.dropout_dec[-1](z_list[-1])) # utt x (zdim) | |
z_all = torch.stack(z_all, dim=1) | |
z_all = self.output(z_all) | |
z_all.masked_fill_( | |
make_pad_mask(ys_in_lens, z_all, 1), | |
0, | |
) | |
return z_all, ys_in_lens | |
def init_state(self, x): | |
# to support mutiple encoder asr mode, in single encoder mode, | |
# convert torch.Tensor to List of torch.Tensor | |
if self.num_encs == 1: | |
x = [x] | |
c_list = [self.zero_state(x[0].unsqueeze(0))] | |
z_list = [self.zero_state(x[0].unsqueeze(0))] | |
for _ in range(1, self.dlayers): | |
c_list.append(self.zero_state(x[0].unsqueeze(0))) | |
z_list.append(self.zero_state(x[0].unsqueeze(0))) | |
# TODO(karita): support strm_index for `asr_mix` | |
strm_index = 0 | |
att_idx = min(strm_index, len(self.att_list) - 1) | |
if self.num_encs == 1: | |
a = None | |
self.att_list[att_idx].reset() # reset pre-computation of h | |
else: | |
a = [None] * (self.num_encs + 1) # atts + han | |
for idx in range(self.num_encs + 1): | |
# reset pre-computation of h in atts and han | |
self.att_list[idx].reset() | |
return dict( | |
c_prev=c_list[:], | |
z_prev=z_list[:], | |
a_prev=a, | |
workspace=(att_idx, z_list, c_list), | |
) | |
def score(self, yseq, state, x): | |
# to support mutiple encoder asr mode, in single encoder mode, | |
# convert torch.Tensor to List of torch.Tensor | |
if self.num_encs == 1: | |
x = [x] | |
att_idx, z_list, c_list = state["workspace"] | |
vy = yseq[-1].unsqueeze(0) | |
ey = self.dropout_emb(self.embed(vy)) # utt list (1) x zdim | |
if self.num_encs == 1: | |
att_c, att_w = self.att_list[att_idx]( | |
x[0].unsqueeze(0), | |
[x[0].size(0)], | |
self.dropout_dec[0](state["z_prev"][0]), | |
state["a_prev"], | |
) | |
else: | |
att_w = [None] * (self.num_encs + 1) # atts + han | |
att_c_list = [None] * self.num_encs # atts | |
for idx in range(self.num_encs): | |
att_c_list[idx], att_w[idx] = self.att_list[idx]( | |
x[idx].unsqueeze(0), | |
[x[idx].size(0)], | |
self.dropout_dec[0](state["z_prev"][0]), | |
state["a_prev"][idx], | |
) | |
h_han = torch.stack(att_c_list, dim=1) | |
att_c, att_w[self.num_encs] = self.att_list[self.num_encs]( | |
h_han, | |
[self.num_encs], | |
self.dropout_dec[0](state["z_prev"][0]), | |
state["a_prev"][self.num_encs], | |
) | |
ey = torch.cat((ey, att_c), dim=1) # utt(1) x (zdim + hdim) | |
z_list, c_list = self.rnn_forward( | |
ey, z_list, c_list, state["z_prev"], state["c_prev"] | |
) | |
if self.context_residual: | |
logits = self.output( | |
torch.cat((self.dropout_dec[-1](z_list[-1]), att_c), dim=-1) | |
) | |
else: | |
logits = self.output(self.dropout_dec[-1](z_list[-1])) | |
logp = F.log_softmax(logits, dim=1).squeeze(0) | |
return ( | |
logp, | |
dict( | |
c_prev=c_list[:], | |
z_prev=z_list[:], | |
a_prev=att_w, | |
workspace=(att_idx, z_list, c_list), | |
), | |
) | |