# Copyright 2019 Hitachi, Ltd. (author: Yusuke Fujita) # Licensed under the MIT license. # # This module is for computing audio features import librosa import numpy as np def transform(Y, dtype=np.float32): Y = np.abs(Y) n_fft = 2 * (Y.shape[1] - 1) sr = 8000 n_mels = 23 mel_basis = librosa.filters.mel(sr, n_fft, n_mels) Y = np.dot(Y**2, mel_basis.T) Y = np.log10(np.maximum(Y, 1e-10)) mean = np.mean(Y, axis=0) Y = Y - mean return Y.astype(dtype) def subsample(Y, T, subsampling=1): Y_ss = Y[::subsampling] T_ss = T[::subsampling] return Y_ss, T_ss def splice(Y, context_size=0): Y_pad = np.pad(Y, [(context_size, context_size), (0, 0)], "constant") Y_spliced = np.lib.stride_tricks.as_strided( np.ascontiguousarray(Y_pad), (Y.shape[0], Y.shape[1] * (2 * context_size + 1)), (Y.itemsize * Y.shape[1], Y.itemsize), writeable=False, ) return Y_spliced def stft(data, frame_size=1024, frame_shift=256): fft_size = 1 << (frame_size - 1).bit_length() if len(data) % frame_shift == 0: return librosa.stft( data, n_fft=fft_size, win_length=frame_size, hop_length=frame_shift ).T[:-1] else: return librosa.stft( data, n_fft=fft_size, win_length=frame_size, hop_length=frame_shift ).T