#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import time import copy import torch from torch.cuda.amp import autocast from typing import Union, Dict, List, Tuple, Optional from funasr_detach.register import tables from funasr_detach.models.ctc.ctc import CTC from funasr_detach.utils import postprocess_utils from funasr_detach.utils.datadir_writer import DatadirWriter from funasr_detach.models.paraformer.cif_predictor import mae_loss from funasr_detach.train_utils.device_funcs import force_gatherable from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask from funasr_detach.utils.timestamp_tools import ts_prediction_lfr6_standard from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank @tables.register("model_classes", "MonotonicAligner") class MonotonicAligner(torch.nn.Module): """ Author: Speech Lab of DAMO Academy, Alibaba Group Achieving timestamp prediction while recognizing with non-autoregressive end-to-end ASR model https://arxiv.org/abs/2301.12343 """ def __init__( self, input_size: int = 80, specaug: Optional[str] = None, specaug_conf: Optional[Dict] = None, normalize: str = None, normalize_conf: Optional[Dict] = None, encoder: str = None, encoder_conf: Optional[Dict] = None, predictor: str = None, predictor_conf: Optional[Dict] = None, predictor_bias: int = 0, length_normalized_loss: bool = False, **kwargs, ): super().__init__() if specaug is not None: specaug_class = tables.specaug_classes.get(specaug) specaug = specaug_class(**specaug_conf) if normalize is not None: normalize_class = tables.normalize_classes.get(normalize) normalize = normalize_class(**normalize_conf) encoder_class = tables.encoder_classes.get(encoder) encoder = encoder_class(input_size=input_size, **encoder_conf) encoder_output_size = encoder.output_size() predictor_class = tables.predictor_classes.get(predictor) predictor = predictor_class(**predictor_conf) self.specaug = specaug self.normalize = normalize self.encoder = encoder self.predictor = predictor self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) self.predictor_bias = predictor_bias def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ assert text_lengths.dim() == 1, text_lengths.shape # Check that batch_size is unified assert ( speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0] ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) batch_size = speech.shape[0] # for data-parallel text = text[:, : text_lengths.max()] speech = speech[:, : speech_lengths.max()] # 1. Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) if self.predictor_bias == 1: _, text = add_sos_eos(text, 1, 2, -1) text_lengths = text_lengths + self.predictor_bias _, _, _, _, pre_token_length2 = self.predictor( encoder_out, text, encoder_out_mask, ignore_id=-1 ) # loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) loss_pre = self.criterion_pre( text_lengths.type_as(pre_token_length2), pre_token_length2 ) loss = loss_pre stats = dict() # Collect Attn branch stats stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) ds_alphas, ds_cif_peak, us_alphas, us_peaks = ( self.predictor.get_upsample_timestamp( encoder_out, encoder_out_mask, token_num ) ) return ds_alphas, ds_cif_peak, us_alphas, us_peaks def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) ind: int """ with autocast(False): # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) # Forward encoder encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] return encoder_out, encoder_out_lens def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): meta_data = {} # extract fbank feats time1 = time.perf_counter() audio_list, text_token_int_list = load_audio_text_image_video( data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000), data_type=kwargs.get("data_type", "sound"), tokenizer=tokenizer, ) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank( audio_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) # predictor text_lengths = torch.tensor([len(i) + 1 for i in text_token_int_list]).to( encoder_out.device ) _, _, us_alphas, us_peaks = self.calc_predictor_timestamp( encoder_out, encoder_out_lens, token_num=text_lengths ) results = [] ibest_writer = None if kwargs.get("output_dir") is not None: if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer["tp_res"] for i, (us_alpha, us_peak, token_int) in enumerate( zip(us_alphas, us_peaks, text_token_int_list) ): token = tokenizer.ids2tokens(token_int) timestamp_str, timestamp = ts_prediction_lfr6_standard( us_alpha[: encoder_out_lens[i] * 3], us_peak[: encoder_out_lens[i] * 3], copy.copy(token), ) text_postprocessed, time_stamp_postprocessed, _ = ( postprocess_utils.sentence_postprocess(token, timestamp) ) result_i = { "key": key[i], "text": text_postprocessed, "timestamp": time_stamp_postprocessed, } results.append(result_i) if ibest_writer: # ibest_writer["token"][key[i]] = " ".join(token) ibest_writer["timestamp_list"][key[i]] = time_stamp_postprocessed ibest_writer["timestamp_str"][key[i]] = timestamp_str return results, meta_data